Tota	l No. c	of Questions : 6] SEAT No. :]
P51	146	[Total No. of Pages : 2] BE/Insem - 552	2
		B.E. (E & TC)	
		Computer Networks	
		(2012 Pattern)	
Time	e:1 H)
Instr	uctio	ns to the candidates:	
	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4. Q5 or Q.6.	
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.	
	<i>3</i>)	Figures to the right side indicate full marks.	
	<i>4</i>)	Assume suitable data if necessary.	
		A B	
Q 1)	a) >	Draw the OSI model. List and explain functions of data link layer [6]]
	b)	List the different types of cables used in networking with their connectors	S
	ŕ	and applications. [4]	
		OR	
		S 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2
<i>Q</i> 2)	a)	Draw and explain data communication system [6]	
	b)	Draw star topology and explain its advantages and disadvantages [4]]
<i>Q3</i>)	a)	Explain bit stuffing framing method. [6]	1
2-7		70 S.	
	b)	Explain 1 persistent and nonpersistant CSMA protocol. [4]]
		OR	
04)	۵)	Evaloin 2 tymes of HDLC from as	1
<i>Q4</i>)	a)	Explain 3 types of HDLC frames. [6]]
	b)	Explain the Go back N sliding window protocol. [4]]

Q 5)	a)	Explain Basic and Extended Service sets in 802.11 standard	[6]
	b)	List the connecting devices and explain any one.	[4]
		OR	
Q6)	a)	Explain Bluetooth architecture.	[6]
	b)	Explain the concept of virtual LAN`	[4]
		Explain the concept of virtual LAN	

Tota	l No. c	of Questions : 6]	SEAT No. :
P51	153		[Total No. of Pages : 2
101		B.E./Insem. - 559	
		B.E. (E/TC) (Semester	- I)
		ELECTRONIC PRODUCT D	ESIGN
		(2012 Pattern) (Elective	-II)
Time	e:1 H	lour]	, [Max. Marks : 30
		ons to the candidates:	•
	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4, Q5 or Q.	6.
	<i>2</i>)	Figures to the right indicate full marks.	
	<i>3</i>)	Neat diagrams must be drawn wherever	necessary.
	<i>4</i>)	Assume suitable data if required.	
	<i>5</i>)	Use of non-programmable calculator is	allowed.
	8		o'
<i>Q1</i>)	a)	Explain the following terms -	[6]
		i) Cognition	
		ii) Reliability	
		iii) Ergonomics	
		iv) Quality	
	b)	Explain the importance of vibration & shock aleastrania and dust with switchle example.	
		electronic product with suitable example.	[4]
		OR	6 5°
<i>Q</i> 2)	a)	Explain the concept of user-centered design	[6]
	b)	What is the need of grounding? Briefly explain of	ifferent types of grounding.[4]

Q3) a) What is prototyping? Discuss different types of prototyping indicating their advantages and drawbacks. [6]

b) Explain what do you understand by the term design reviews. [4]

OR

Q 4)	a)	Explain the design process of any one electronic product using ne block diagram.	eat [6]
	b)	Discuss the methods of module debug & test.	[4]
Q 5)	a)	State the features of good programming.	[4]
	b)	Explain the various phases of bug introduction & common bugs prese in software.	ent [6]
		OR	
Q6)	a)	Explain the term user interface wrt to software.	[4]
	b)	Discuss any two with the help of neat diagram/schematic.	[6]
		i) Structured programming	
	D	ii) Coupling & cohension	
		iii) Documentation for software	
			3
		Ro. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	7
		CG1 681	
		26.	
		O.A.	

Tota	l No.	. of Questions : 6] SEAT No. :
P51	149	[Total No. of Pages : 2
	LTZ	B.E./Insem - 555
		B.E. (E & TC) (Semester - I)
		Embedded Systems & RTOS
		(2012 Pattern) (Elective -I)
		Hour] [Max. Marks : 30
111311	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4, Q5 or Q.6.
	2)	Neat diagrams must be drawn wherever necessary.
	<i>3</i>)	Figures to the right indicate full marks.
	4)	Assume suitable data if necessary.
Q1)	a)	Explain following design metrics: [5]
		i) NRE cost
		ii) Time to Market
		iii) Power
	b)	Explain system development spiral model with diagram. [5]
		OR
Q 2)	a)	What are different types of embedded processor technology? Explain their merits and demerits of them.
	b)	Explain system development V shape model with diagram [5]

- Q3) a) Explain different states of task with services as an example. [6]
 - b) Explain with example why mutual exclusion is necessary while using shared resources. [4]

OR

- Q4) a) Explain how priority inversion occurs with example of three tasks diagram.[6]
 - b) What is difference between preemptive kernel & Non Preemptive Kernel.[4]

Q 5) 8	a)	OSSEMAccept(). Which one of these functions is used in ISR a	na .nd [4]
	b)	Explain following functions in RTOS	[6]
		i) OSINIT()	
		ii) OSSTART()	
		OR	
Q6)	a)	Explain with block diagram use of memory management and que	ue
			[6]
	b)	Explain following function	[4]
		i) OSQPost()	
		ii) OSQPend()	
		N. C.	
		$\Theta\Theta\Theta$	
	6		
		Explain following function i) OSQPost() ii) OSQPend() ORDER OF THE PROPERTY	
		6,8	,
			3
		6	
			h.
		8.	
		6,0	
		6	
		No.	
BE/I	nson	n-555 2 Polything and the state of the sta	
		<u> </u>	

Total No.	of Questions : 6] SEAT No. :
P5147	[Total No. of Pages : 2
	BE/Insem - 553
	B.E. (E & TC) (Semester - I)
	MICROWAVE ENGINEERING
	(2012 Pattern)
Time : 1 1	Hour] [Max. Marks : 30
Instruction	ons to the candidates:
1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q5 or Q.6.
2)	Neat Diagrams must be drawn wherever required.
3)	Figures to the right side indicate full marks.
<i>4</i>)	Use of calculator is allowed.
5)	Assume suitable data if necessary.
Q1) a)	Explain the following terms related to the rectangular waveguide. [6]
	i) Cut off wavelength
	ii) Dominant Mode
	iii) Wave Impedance
b)	What is Cavity Resonator? Draw and explain the re-entrant cavity resonator [4] OR
Q2) a)	A rectangular waveguide has dimensions 4 x 2 cms. Determine the guide

Q2) a) A rectangular waveguide has dimensions 4 x 2 cms. Determine the guide wavelength, phase velocity and phase constant β at a wavelength of 6cms for the dominant mode.[6]

b) Write a short note on:

[4]

- i) Advantages and applications of microwave.
- Q3) a) What is a directional coupler? Draw and explain the operation two hole directional coupler. [6]
 - b) Explain the operation of circulator using two magic tees. [4]

P.T.O.

- With the help of schematic, explain the working principle of an Isolator. [6] **Q4**) a) Give the difference between Strip lines and Microstrip lines. [4] b) Explain the following terms **[6] Q5**) a) Intrinsic Impedance i) Wave Impedance and ii) Characteristics Impedance.
 - Explain the construction and operation of Gyrator b) OR

A signal of power 20 mw is fed into the one of the collinear ports of the **Q6**) a) H-plane Tee. Determine the powers at the remaining ports when other ports are terminated by means of matched loads. **[6]**

State and explain the need of network and circuit concept for microwave b) analysis. [4]

[4]

Total No. of Questions : 6]	20	SEAT No.:	
P5154		[Total No. of Pages	: 2

			B.E. (E & TC) PLC's & AUTOMATION	
		(2	2012 Pattern) (Elective - II) (Semeste	er - I)
Time	: 1 E	lour]		[Max. Marks :30
		ns to	the candidates:	•
	1)		e Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q6.	. 6
	<i>2) 3)</i>	- 1	t diagrams must be drawn wherever necessary. wes to the right indicate full marks.	2
	<i>4</i>)	_	of logarithmic tables slide rule, Mollier charts	s. electronic pocket
	,		ulator and steam tables is allowed.	, _I
	<i>5)</i>	Assi	ume suitable data, if necessary.	
		O.X.		
Q 1)	a) (Dra	w and explain architecture of Industrial Automat	ion system. [6]
	b) ^v	Eva	luate the control system with following criteria:	[4]
		i)	Stability	
		ii)	Steady state Regulation.	
		iii)	Transient Regulation.	
			OR	R
Q2)	a)	Witl	h suitable example explain Industrial Automation	. [6]
	b) Draw and explain block diagram of Analog Control System.			
Q3)	a)	Dof	ine the Transmitter. Explain need of transmitters in	process industry [6]
Q 3)	a)			
	b)		istance of sensor changes linearly from 100Ω to 1	
			nges from 20°C to 120°C. Find the linear equation	
		and	temperature.	[4]
			OR OR	
Q4)	a)	Exp	lain role of smart and intelligent transmitters in p	process control. [5]
	b)	Wri	te a short note on RTD.	[5]

Q5)	a)	Write a short note on Brushless DC motor.	[5]
	b)	Explain cascade PID controller with suitable example.	[5]
		OR	
Q6)	a)	Write a short note on Pneumatic actuator.	[5]
20)			
	b)	Write a short note on different types of switches.	[5]
		Write a short note on different types of switches.	
		Rolling Spirit S	

B.E./Insem.-560