Total	l No.	of Questions : 6]	SEAT No.:
P50	73		[Total No. of Pages : 2
		T.E./Insem621	
		T.E. (E & TC) (Semester	r - I)
		DIGITAL COMMUNICAT	,
		(2015 Pattern)	
Time	e:11	Hour]	[Max. Marks: 30
Insti	ructio	ons to the candidates:	
	<i>1)</i>	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.	
	2)	Neat diagrams must be drawn wherever nece	ssary.
	3)	Figures to the right side indicate full marks.	6
	4)	Assume suitable data if necessary.	2
<i>Q1)</i>	a)	Draw block diagram of PCM transmitter and	d explain its working. [6]
2)		9.	5
	b)	A DM transmitter is designed to operate a	3 times Nyquist rate for a
		signal with 3 KHz bandwidth. Find the maxi	V 1
		sinusoid to avoid slope overload if step size	1
		sinusoid to avoid stope overload it step size	7 13 230 m v. [4]
		OR	
Q2)	a)	Draw block diagram of DM receiver and exp	plain its working. [6]
	h)	Find a signal o(t) which is hand limited to 1	Hz and its samples are

$$g(0) = 1$$
, $g(\pm 0.5) = g(\pm 1) = g(\pm 1.5) = ---- = 0$.

Q3) a) Draw block diagram of T1 carrier system.

[6]

b) What absolute bandwidth is required to transmit an information rate of 8kbps using 64 level baseband signaling over a raised cosine channel with roll off factor of 40%. [4]

OR

Q4) a) What is scrambling? Why is its use?

[4]

b) Draw the line codes - Unipolar RZ, Polar NRZ, AMI, Manchester, Polar RZ and quaternary polar for the bit stream 10110100. [6]

P.T.O.

Define Random Process. Differentiate between random variable and **Q5**) a) random process. Find mean of a random process defined as $X(t) = A\cos(2\pi f_c t + \emptyset)$ where b) \emptyset is a uniformly distributed over $(0, 2\pi)$. [4] OR What is Stationary Process? Explain. **Q6)** a) [6] What is white noise? Explain. **[4]** As the second of the second of

Total No. of Questions : 6]	SEAT No.:	
P5074	[Total No. of Pa	iges : 2

T.E./Insem.-622 T.E. (E & TC) (Semester - I) DIGITAL SIGNAL PROCESSING

(2015 Pattern)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) All questions carry equal marks.
- 5) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 6) Assume suitable data if necessary.
- Q1) a) An analog signal is given by

 $x(t) = 3\cos 100\pi t + 2\sin 300\pi t - 4\cos 100\pi t$

- i) What is the Nyquist rate for this signal?
- ii) Write the equation of sampled signal.
- iii) If the signal is sampled at a rate of 200 sam/sec. What is the discrete time signal obtained after sampling.
- b) Explain the basic elements of DSP system.

OR

Q2) a) Explain the concept of basis function and orthogonality. Check whether the functions given are orthogonal or not over a time interval [0, 1].

$$f(t)=1; x(t)=\sqrt{3}(1-2t).$$
 [6]

b) What are the advantages of digital signal processing over analog signal processing. [4]

P.T.O.

[6]

[4]

Compute the DFT of following sequence *Q3*) a)

$$x(n) = \cos \frac{n\pi}{4} n = 0,1,2,3$$
 [4]

- Given $x(n) = [0 \ 1 \ 2 \ 3]$, find x(k) using DIT FFT algorithm. b) [4]
- How many computations are required to compute 16 point DFT using c) DFT & FFT algorithm. [2]

OR

Compute the circular convolution of following sequences **Q4**) a) [4] $x_1(n) = \{1 \ 1 \ 2 \ 2\} \ x_2(n) = \{1 \ 2 \ 3 \ 4\}$.

- State and prove circular time shift property. b) [6]
- State and prove the convolution property of Z transform. **Q5**) a) [4]
 - Compute the Z.transform of following sequences b) [6]
 - $x(n)=n \ u(n)$.
 - ii) $x(n) = \left(\frac{1}{2}\right)^n u(n) + (3)^n u(-n-1)$ OR

Q6) a)

Find x(n)

if ROC is

- ii) |z| < 1.
- iii) $\frac{1}{3} < |z| < 1$.
- Explain the causality and stability of discrete time systems w.r.t. Z.transform. [4] b)

SEAT No.:

P5075

[Total No. of Pages: 2

T.E./Insem.-623

T.E. (E & TC) (Semester - I)

ELECTROMAGNETICS

(2015 Pattern)

Time: 1 Hour]

[Max. Marks : 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) A uniform line charge of 4μ C/m is located on the y axis. Find \overline{E} in Cartesian coordinates at P(3, 1, 2) if the charge extends from: [6]
 - i) $-\infty < y < \infty$,
 - ii) -5 < y < 10.
 - b) Derive an expression for the potential difference V_{AB} between point A and B, in presence of an uniform line charge with charge density ρ_L lying on entire Z-axis $(-\infty \cos \infty)$. [4]

V OR

- Q2) a) Using Gauss's Law, derive an expression for electric field intensity (\overline{E}) at point P in free space, due to infinite surface charge with charge density ρ_s , placed on entire Z = 0 plane. Consider point P towards positive side of Z = 0 plane.
 - b) Four infinite uniform sheets of charge are located as follows $20 pC/m^2$ at $y=7,-8pC/m^2$ at $y=3,6pC/m^2$ at y=-1 and $-18pC/m^2$ at y=-4. Find \overline{E} at the point :
 - i) A(2, 6, -4),
 - ii) B(0, 0, 0),
 - iii) C(-1, -1.1, 5).

Q 3)	a)	Derive electrostatic boundary conditions for the boundary between two perfect dielectric materials. [6]	_
	b)	Let $\varepsilon_{r1} = 2.5$ for $0 < y < 1$ mm, $\varepsilon_{r2} = 4$ for $1 < y < 3$ mm, and ε_{r3} for $3 < y < 5$ mm. Conducting surfaces are present at $y = 0$ and $x = 5$ mm. Calculate the capacitance per square meter of surface area if:	
		i) ε_{r3} is that of air;	
		ii) $\varepsilon_{r3} = \varepsilon_{r1}$	
		iii) $\varepsilon_{r3} = \varepsilon_{r2}$;	
		iv) region 3 is silver.	
		OR	
Q4)	a)	Derive an expression for energy stored in an electrostatic field in terms	S
	1.)	of \overline{D} & \overline{E} .	•
	b)	Two extensive homogeneous isotropic dielectrics meet on plane $z = 0$	
		For $z > 0$, $\varepsilon_{r1} = 4$ and $z < 0$, $\varepsilon_{r2} = 3$. A uniform electric field	1
		$\overline{E}_1 = 5\hat{a}_x - 2\hat{a}_y + 3\hat{a}_z kV / m \text{ exists for } z \ge 0. $	
	X	Find: i) \overline{E}_2 for $z \le 0$;	
		ii) The angle which E ₁ makes with the interface;	
		iii) The energy densitie (in J/m^3) for $z > 0$.	
Q 5)	a)	i) Find \overline{H} in Cartesian components at P(2, 3, 4) if there is a current	t
		filament on the z axis carrying 8mA in the \bar{a}_z direction.	3
		ii) Repeat if the filament is located at $x = -1$, $y = 2$.	
		[6]	_
	b)	Write Maxwell's equation in point form and integral form for static electric and steady magnetic fields. [4]	
		and steady magnetic fields. [4]	J
Q6)	a)	Let $\overline{H} = 15r\overline{a}_{\phi}mA/m$.	
~	,	i) Determine current enclosed by the circular path $r = 5$, $\theta = 25^{\circ}$,
		$0 \le \phi \le 2\pi$ by using line integral side of Stokes theorem.	,
		ii) Determine current by surface integral side of Stokes theorem.	
		[6]
	b)	State and prove Ampere Circuital Law. [4	

Total	l No.	of Questions : 6]	06	SEAT No.:	
P50	177			L	No. of Pages : 2
130	, , ,	T E /I	ncom 625	[Total I	10. 011 ages . 2
			nsem625		
		T.E. ((E & TC)		
		MECH	ATRONICS		
		(2015 Patter)	n) (Semester	r - I)	
Time	e : 1 l	Hour]			x. Marks: 30
		ons to the candidates:		•	
	<i>1)</i>	Answer Q.1 or Q.2, Q.3 or Q.4	4, Q.5 or Q.6.		
	<i>2)</i>	Neat diagrams must be draw		ssary.	
	3)	Assume suitable data, if nece	essary.	20	
		S.L.		7	
Q 1)	a)	What is Conventional and In	ntegrated approa	ach in mechatr	onics design?
		26.		5	[5]
				7	
	b) \	Explain Audio CD Player co	ontrol system as a	an example of	Mechatronics
		systems.	, 6, °0.	•	[5]
		-			
			OR		
<i>Q2</i>)	a)	Explain case study of Desig	on of Coin Cou	nter / Coin Se	narator as an
Q2)	u)	example of mechatronics sy	A V	nter / Com Se	[5]
		example of mediationes \$5	y		191
	b)	Sensitivity of a thermocoup	ale is 0.01 V/a	Find output	voltage if the
	U)	temperature is 200°C. Also t			(5)
		temperature is 200 C.7 fiso (temperature for	3.5 V output.	
		9.			
		×′			<u>ب</u>
(12)	۵)	What are the arrest to	Т 1	2 F 14	
<i>Q3</i>)	a)	What are the proximity sens proximity sensors.	sors used in Indu	istry/Explain	
		proximity schsors.			[5]

OR 6.2

measurement? What are its advantages and limitations?

Explain basic principle of working of ultrasonic transducer for flow

[5]

- Q4) a) A resistance wire strain gauge with a GF of 2.0 is bonded to a steel structural member subjected to a stress of 100 MN/m². The modulus of elasticity of steel is 200 GN/M². Find the percentage change in the value of the gauge resistance, due to applied stress. Comment upon the results.

 [5]
 - b) Write a short note on Smart Sensors used in mechatronics applications? Explain it with schematic representation. [5]
- Q5) a) Draw schematic of typical hydraulic system used in Mechatronics applications. [4]
 - b) Draw Schematic of hydraulic actuator systems. The hydraulic cylinder is of 1cm radius. Find the force exerted on the piston if the pressure is 200N. [6]

OR

- **Q6)** a) Explain significance of hydraulic pumps in typical hydraulic systems. [5]
 - b) Draw schematic of filters and pressure regulator in hydraulic systems.

[5]

T.E./Insem.-625

Total	No. o	of Questions : 6] SEAT No. :
P50'	76	[Total No. of Pages : 2
		T.E./Insem624
		T.E. (E & TC) (Semester - I)
		MICROCONTROLLERS
		(2015 Pattern)
Time		
	ucuo. 1)	ns to the candidates: Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
	<i>2)</i>	Neat diagrams must be drawn wherever necessary.
	<i>3)</i>	Figures to the right side indicate full marks.
	<i>4</i>)	Use of calculator is allowed.
	<i>5)</i>	Assume suitable data if necessary.
		· 6. ·
Q1)	a) C	Draw and explain the block diagram of 8051 in short. [5]
	b) 🌣	Explain following instructions with operation, addressing mode, no. of cycles and time required to execute the following instructions [5]
		i) DJNZ Rn, X,
		ii) MOVC A, @A+DPTR
		iii) DAA. OR
Q2)	a)	Draw and explain in depth functional diagram of Timer/Counter. [5]
	b)	Write an ALP to transfer GOD continuously at the baud rate of 9600. [5]

Draw an interfacing diagram for 7-segment display connected to port 1 **Q3)** a) and write an ALP to display BCD counter. [5]

Draw and explain the block schematic of Logic analyzer.

OR b) [5]

- **Q4)** a) Draw an interfacing diagram of 4*4 matrix keyboard and draw flowchart to detect key pressed. [5]
 - b) Draw an interfacing diagram for LCD and write an ALP to display GANESH on line 2 with default values. [5]
- **Q5)** a) Draw an interfacing diagram of DAC and write an ALP to generate square of 2 KHz with delay using timer 1 in mode 0. [5]
 - b) Draw an interfacing diagram of Stepper motor and write an ALP to rotate it anticlockwise continuously. [5]

OR

- **Q6)** a) Draw an interfacing diagram for Opto-isolator and write an ALP to flash lamp connected to it with delay of 10 msec. [5]
 - b) Draw a DAS to display the frequency of external signal on 7-segment display with LED indicator for highest value, Draw the flow chart. [5]