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Abstract
Multiple treatment phases are involved in a water treatment plant (WTP), but coagulation and disinfection are the most 
crucial for producing safe and clear water. Determining the optimal coagulant and chlorine doses in the laboratory is time-
consuming and poses a significant challenge in water treatment. To streamline this process, artificial neural network (ANN) 
models have been developed to predict the chlorine dose based on the coagulant dose. Studies comparing various ANN 
models indicate that the radial basis function neural network (RBFNN) model provides excellent predictions (R = 0.999). 
In modeling with radial basis function neural networks (RBFNN) and generalized regression neural networks (GRNN), the 
spread factor was varied from 0.1 to 15 to achieve a stable and accurate model with high predictive accuracy. Employing soft 
computing models to define the coagulant and chlorine doses has proven highly beneficial for the management of WTPs, 
significantly enhancing the efficiency and accuracy of dosing predictions.
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FFNNCD1	� Feed forward neural network coagulant dose 
model using Levenberg–Marquardt training 
algorithm

FFNNCD2	� Feed forward neural network coagulant 
dose model using Bayesian regularization 
training algorithm

FWMPM	� Fuzzy weighting multiple predictive model
GUI	� Graphical user interface
GA-LP	� Genetic algorithm–linear programing
GRNN	� Generalized regression neural networks
GD	� Gradient descent
GDM	� Gradient descent with momentum
GCF	� Conjugate gradient back propagation with 

fletcher-powell
GP	� Genetic programming
LM	� Levenberg–Marquardt
LFOM	� Linear flow orifice meter
LCDC	� Linear chemical dose controller
MAE	� Mean absolute error
MPN	� Most probable number
MLR	� Multiple linear regression
MMPC	� Multiple model predictive control
MSE	� Mean square error
OSS	� One step secant
PAC	� Poly aluminum chloride
PCMC	� Pimpri Chinchwad Municipal Corporation
RBFNN	� Radial basis function neural network
RCNN	� Residual chlorine neural network
RP	� Resilient back propagation
RMSE	� Root mean square error
R2	� Coefficient of determination
SS	� Suspended solids
SF	� Spread factor
TDS	� Total dissolved solids
TSS	� Total suspended solids
TP	� Total phosphorus
VLRGD	� Variable learning rate gradient descent
WQNN	� Water quality neural network
WTP	� Water treatment plant
WWTP	� Wastewater treatment plant
WDN	� Water distribution network
WQI	� Water quality index

1  Introduction

In water treatment plants (WTP), a multitude of phases 
are encompassed; however, among them, coagulation and 
disinfection stand out as pivotal stages responsible for gen-
erating water that is both safe and clear (Gibbs et al. 2006; 
Guan-De et al. 2008; Kim and Parnichkun 2017; Hebati 
et al. 2017). As an economical, efficient bactericidal agent 

with minimal residuals, chlorine is widely utilized for 
disinfection purposes (Lee et al. 2004; Bello et al. 2014; 
Librantz et al. 2018). The effectiveness of the chlorina-
tion process depends up on three critical factors such as 
water turbidity, pH levels, and the quantity of chlorine 
introduced (Zhang et al. 2011). Turbidity holds a signifi-
cant role in both coagulation and disinfection, facilitating 
particle settlement and offering a protective shield against 
microorganisms (Bowden et al. 2006; Wadkar et al. 2021a, 
b, c; Wang et al. 2023). Attempting to represent the com-
plex, nonlinear relationship between turbidity, chlorina-
tion, and coagulation with a linear mathematical model 
presents a significant challenge (Constans et al. 2003; Wu 
and Lo 2010; Liu et al. 2018; Kote and Wadkar 2019; 
Bobadilla et  al. 2019). Hence, it becomes essential to 
ascertain the association between chlorine and coagulant 
dosages. Despite the feasibility of predicting chlorine dos-
ing through coagulant concentrations at a WTP, there is 
a current scarcity of published literature addressing these 
issues. To bridge this existing gap, the present study is 
centered on the development of multiple artificial neural 
network (ANN) models aimed at establishing the intricate 
correlation between coagulant and chlorine doses. The 
testing and comparison of diverse ANN models and train-
ing algorithms (Asnaashari et al. 2014; Ayvaz et al. 2015; 
Abba et al. 2017; Amali et al. 2018; Reilly et al. 2018; 
Narges et al. 2021) are of paramount importance in order 
to pinpoint a network capable of achieving satisfactory 
outcomes within a reasonable timeframe. Each model is 
subjected to numerous training iterations, and the evalu-
ation of the most adept model is grounded in its perfor-
mance (Bekkari and Zeddouri 2019). Turbidity plays is a 
vital role in coagulation and disinfection as it responsible 
for settlement of particles and provide shields to micro-
organisms. It is difficult to describe the nonlinear behav-
ior of turbidity in relation to chlorination and coagulation 
by means of a linear mathematical model. Determination 
of the relationship between chlorine dose and coagulant 
dose is therefore necessary. Application of soft computing 
model for defining dose of coagulant and dose of chlorine 
are inextricably linked at a WTP will be highly beneficial 
for WTP Managers. In this study, numbers of ANN models 
for establishment of relationship between Coagulant and 
Chlorine Dose are developed. It is necessary to test and 
compare various ANN and training algorithms in order 
to develop a network that can perform satisfactorily in a 
reasonable amount of time. Each model is trained many 
times and the best performance is evaluated. While chlo-
rine dose prediction using coagulant concentrations at a 
WTP is possible, as there is no published literature on 
interrelation ship between coagulant and chlorine dose at 
WTP. Every model underwent repeated training sessions, 
with the optimal performance being assessed.
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2 � Material

The water treatment plant located in Sant Tukaram Nagar, 
Pimpri Chinchwad, Pune, Maharashtra, India. the area hav-
ing the widespread coordinates of 18° 37′ 33.88″ N latitude 
and 73° 48′ 43.77″ E longitude. The WTP pull out 428 MLD 
water from Khadakwasla dam. After the treatment, water is 
distributed to entire Sant Tukaram Nagar Pimpri Chinchwad, 
Pune. Daily around 180 lpcd water supplied.

3 � Methodology

For CCDNN modeling, 1849 data samples of input variables 
(Turbidity of the outlet water, residual chlorine, and coagu-
lant dose) and target variable (chlorine dose) collected from 
WTP. The variables examined in this study are inextricably 
linked to the coagulation and chlorination processes. Data 
were collected from the plant laboratory during four years 
for inlet and outlet water quality daily (2012–2016). MAT-
LAB version 16 was used to develop ANN models. ANN 
models such as RBFNN, FFNN, CFNN and GRNN have 

been developed with trial run that allows modification of the 
input variables, hidden nodes, training function, the spread 
factor (SF). It is always a difficult task to create an optimal 
number of hidden nodes in ANN applications. The optimum 
number of nodes in each layer is not possible precisely and 
easily. In this study, information of both input and output 
nodes is used for building hidden neurons in a hidden layer. 
The training and test data are divided between 75:30 and 
80:20 respectively during development of the ANN mod-
els. Training functions that are diverse, such as Bayesian 
Regularization (BR),

Levenberg–Marquardt (LM), Resilient Back Propaga-
tion (RP), BFGS Quasi-Newton (BFG), One-Step Secant 
(OSS) Conjugated Gradient Back Propagation (CGB), Clus-
ter–Powell (CGF), Gradient Back Propagation (VLRB) are 
used. It was reported that the RBFNN and the GRNN models 
have the best test performance respectively with the SF of 1 
and 0.1. Thus, RBFNN and GRNN models ranging from 0.1 
to 15 have been tested in this study. Standard statistics (JK), 
a standard deviation (L), skewness (M1), kurtosis (M2) and 
error statistics like regression coefficient (R), mean square 
error (MSE) and mean absolute error are used to quantify 
the percentage performance of these ANN models (MAE). 

Table 1   Performance indices of 
CCDNN1 models during testing 
period

Type of ANN Model SF/Training 
algorithm

Error statistics Standard statistics

R MSE MAE x̄
(1.954)

σ
(0.171)

ɣ1
(2.53)

ɣ2
(12.39)

RBFNN1 0.1 0.753 0.018 0.077 1.962 0.120  − 2.438 12.287
1 0.504 0.033 0.113 1.926 0.180  − 2.023 15.283
5 0.285 0.040 0.133 1.916 0.200  − 2.058 13.280
10 0.443 0.617 0.647 1.890 0.786 0.374 2.183
15 0.421 0.631 0.661 1.913 0.795 0.414 2.147

GRNN1 0.1 0.554 0.534 0.584 1.885 0.731 0.352 2.431
1 0.451 0.611 0.642 1.888 0.782 0.401 2.177
5 0.424 0.633 0.663 1.980 0.796 0.506 2.134
10 0.385 0.660 0.699 1.929 0.812 0.593 2.073
15 0.342 0.684 0.720 1.888 0.827 0.619 2.024

FFNN LM 0.427 0.628 0.651 1.903 0.792 0.392 2.181
BR 0.400 0.648 0.646 1.910 0.803 0.473 2.288
BFG 0.396 0.649 0.672 1.9064 0.805 0.386 2.298
RP 0.384 0.655 0.677 1.8063 0.809 0.475 2.100
CGF 0.398 0.657 0.684 1.8038 0.810 0.406 2.191
CGM 0.302 0.715 0.702 1.921 0.844 0.516 2.171
OSS 0.197 0.763 0.753 1.908 0.873 0.403 2.258

CFNN LM 0.407 0.640 0.654 1.962 0.800 0.463 2.249
BR 0.411 0.638 0.665 1.934 0.799 0.449 2.147
BFG 0.219 0.731 0.742 1.879 0.855 0.6351 1.980
RP 0.237 0.724 0.732 1.914 0.851 0.631 1.978
CGF 0.256 0.717 0.731 1.862 0.847 0.623 1.983
CGM 0.373 0.665 0.689 1.880 0.815 0.586 2.088
OSS 0.405 0.642 0.666 1.985 0.801 0.452 2.165



	 Iranian Journal of Science and Technology, Transactions of Civil Engineering

For its highest R and lowest MSE and MAE values, the best 
performing ANN model is chosen. In addition, standard 
statistics, time series plots and scatter plots are checked for 
the mapping with the observed series. For the best model in 
each category, GUIs for chlorine prediction and coagulant 
dosage were developed. 

4 � Result and Discussion

4.1 � Neural Network Model for Coagulant 
and Chlorine Dose 1

Sixteen models are developed for the coagulant and chlorine 
dose neural network 1 (CCDNN1) model. In order to estab-
lish the optimal networks, coagulant dose as input param-
eter and chlorine dose as output parameter are examined 
with various training functions and ANN (Heddam et al. 
2011; Cuesta et al. 2014; Chandwani et al. 2016; Haghiri 
et al. 2017). On the basis of numerous performance crite-
ria, the behaviour of ANNs is evaluated which is shown 
in Table 1. For ANN prediction with FFNN and CFNN, 
different training function were tried with varying hidden 
nodes from 15 to 90 and for RBFNN and GRNN the value 
of SF varies from 0.1 to 20 during training to achieve best 
performing network. It is observed during training period 
that minimum MSE = 0.019, and minimum MAE = 0.078 
whereas maximum value of R = 0.753 is found. Similarly, 
standard statistics σ = 0.137 to 0.873, ɣ1 = -2.058 to 0.635, 
and ɣ2 = 1.978 to 15.718. During training, it is observed that 
as SF value decreases in GRNN and RBFNN models, the 
values of R increases and values of MSE decreases. On the 
other hand, prediction is highly comparable by RBFNN 1 
model with SF = 0.1. Similarly, it is observed during testing 
period, minimum MSE = 0.014, and minimum MAE = 0.068 
whereas maximum value of R = 0.715 is found. Similarly, 
standard statistics such as σ = 0.12 to 0.608, ɣ1 = -2.461 
to-0.762, and ɣ2 = 3.184 to 12.287.

Prediction accuracy is higher for the RBFNN1 model 
with SF = 0.1 obtained. Further performance measures of 
all models are compared and observed that all the models 
resulted in poor performance, only RBFNN1 model produce 
a good result (R = 0.72). Figure 1. shows the plot of observed 
and predicted series of best FFNN, CFNN, RBFNN, and 
GRNN model during testing period.

4.2 � Neural Network Model for Coagulant 
and Chlorine Dose 2

In coagulant and chlorine dose neural network 2 (CCDNN2) 
model, sixteen models are developed for the coagulant 
and chlorine dose neural network 2 (CCDNN1) model. In 
order to establish the optimal networks, coagulant dose and 

Fig. 1   Comparison of best CCDNN1 models during testing period

Fig. 2   Comparison of best CCDNN2 models during testing period
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residual chlorine as input parameter and chlorine dose as 
output parameter are examined with various training func-
tions and ANN [46–55]. On the basis of numerous per-
formance criteria, the behaviour of ANNs is evaluated. 
It is observed that during training period, MSE = 0.002 
to 0.028, and MAE = 0.013 to 0.104 whereas R varies 
from 0.197 to 0.978. Similarly, standard statistics such as 
σ = 0.044 to 0.184, ɣ1 = −2.713 to −4.286 and ɣ2 = 19.83 
to 62.15 Prediction accuracy is higher for the RBFNN2 
model with SF = 0.1 obtained. Similarly, it is observed dur-
ing testing period that minimum MSE = 0.001, and mini-
mum MAE = 0.015 whereas maximum value of R = 0.97 
is found. Similarly, standard statistics such as σ = 0.036 to 
0.128, ɣ1 = −1.713 to −8.717 and ɣ2 = 17.667 to 89.15. 
It is seen from results of training and testing period that 
RBFNN2 model with SF = 0.1 resulted consistently better 
than FFNN, CFNN and GRNN models. Figure 2 shows the 
plot of observed and predicted series of best FFNN, CFNN, 
RBFNN, and GRNN model during testing period.

4.3 � Neural Network Model for Coagulant 
and Chlorine Dose 3

In coagulant and chlorine dose neural network 3 (CCDNN3) 
model, sixteen models were developed. In order to establish 
the optimal networks, turbidity of the outlet water, residual 
chlorine, and coagulant dose as input parameter and chlorine 
dose as output parameter are examined with FFNN, CFNN, 
RBFNN, and GRNN. The developed models were tested to 
get an appropriate network that provided satisfactory per-
formance. The important performance indices of all ANN 
model are displayed in Table 2, indicating standard statis-
tics and error statistics during testing period. From Table 2, 
it has been observed that during testing period, standard 
statistics for example σ (Min) = 0.026, ɣ1 (Max) = 1.032 
and ɣ2 (Min) = 5.309. Similarly, error statistics such MSE 
(min) = 0.001, and MAE (min) = 0.009 whereas maximum 
value of R = 0.99 is found. In RBFNN and GRNN models as 
SF increases prediction efficiency decreased. In the RBFNN 
model, however, there is clear superiority in prediction with 
SF = 0.1. Figure 3 shows a comparison of the best CCDNN3 

Table 2   Performance indices of 
CCDNN3 models during testing 
period

Type of ANN model SF/Training 
algorithm

Error statistics Standard statistics

R MSE MAE x̄
(1.954)

σ
(0.171)

ɣ1
(2.53)

ɣ2
(12.39)

RBFNN3 0.1 0.999 0.001 0.009 1.953 0.026 1.032 21.046
1 0.812 0.01 0.047 1.949 0.1  − 3.014 20.019
5 0.012 1.069 0.298 1.853 1.005  − 10.24 15.45
10  − 0.175 0.091 0.272 1.782 0.181  − 2.265 12.225
15  − 0.237 0.181 0.391 1.771 0.22  − 1.608 7.813

GRNN3 0.1 0.477 0.023 0.099 1.91 0.151  − 2.324 11.231
1 0.053 0.051 0.199 1.851 0.138  − 3.786 28.395
5 0.053 0.051 0.199 1.851 0.138  − 3.786 28.395
10 0.246 0.028 0.113 1.894 0.166  − 2.539 12.257
15 0.053 0.051 0.199 1.852 0.138  − 3.786 28.395

FFNN LM 0.444 0.025 0.1 1.911 0.154  − 1.963 10.019
BR 0.271 0.037 0.108 1.867 0.188  − 3.107 20.4
BFG 0.392 1.028 0.982 1.889 0.519  − 1.922 6.269
RP 0.349 0.046 0.145 1.901 0.184  − 1.337 6.873
CGF 0.407 0.033 0.119 1.918 0.166  − 1.122 8.197
CGB 0.239 0.063 0.177 1.889 0.192  − 1.035 5.309
OSS 0.262 0.037 0.117 1.899 0.186  − 2.306 11.735

CFNN LM 0.277 0.125 0.324 1.878 0.193  − 2.178 10.786
BR 0.314 0.099 0.287 1.898 0.182  − 2.263 12.078
BFG 0.32 0.143 0.344 1.888 0.212  − 1.681 8.283
RP 0.249 0.074 0.187 1.889 0.234  − 1.003 4.76
CGF 0.433 0.035 0.124 1.896 0.164  − 1.133 8.628
CGB 0.378 0.041 0.135 1.898 0.194  − 0.51 9.123
OSS 0.376 0.052 0.157 1.882 0.19  − 1.136 9.387
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models in the test period, where plot of RBFNN3 almost 
coincides with the plot of observed values. Compared to all 
other ANN models, RBFNN3 model with SF 0.1 produced 
the highest R. It is found that the prediction efficiency has 
increased in RBFNN and GRNN models, with a decrease in 
SF value. Furthermore, compared to all other training algo-
rithms, FFNN and CFNN models with BR training function 
produced good prediction. These models, however, are less 
efficient.

RBFNN models, on the other hand, have a noticeable 
advantage in prediction. It also demonstrates that models 
with three inputs perform better than models with various 
input variations to the networks. Tables 3 show a summary 
of standard statistics for the best RBFNN models in Class I, 
II, and III during the training and testing period. Standard 
statistics for all ANN models were evaluated and displayed 
in Table 3 during the training and testing periods. During 

training and testing, RBFNN 3 model exhibited least σ 
and ɣ2. Most of the best ANN models produced a positive 
kurtosis, where heavier tails are associated with a higher 
peak. The σ (least) of the RBFNN 3 model suggests that 
the data points tend to be close to the set’ s predicted value; 
whereas the σ (Max) of the RBFNN 1 model indicates that 
data points are dispersed throughout a larger range of values.

The results of model simulation indicate that the lower 
the absolute value of ɣ1 (1.032), and the larger the ɣ2 
(21.046) lies with RBFNN3 models, which indicate higher 
the accuracy of the prediction. Compared to other ANN 
models from Class I, II, and III, the RBFNN3 model per-
formed the best with MSE = 0.001 and R = 0.999 over the 
testing period shown in Fig. 4a. Time series plot and scatter 
plots of RBFNN3 model during the testing period is shown 
in Fig. 4b, c respectively. The observed and predicted chlo-
rine dose series is seen to closely map indicating the best 
model. Due to better non-linear approximation, RBFNN 
model showed excellent predictive results.

In most developing countries, the chlorine dose in a WTP 
is usually calculated by the operator’s knowledge, while the 
coagulant dose is measured by a jar test (Kennedy et al. 
2015; Wang et al. 2017). Laboratory analysis is usually used 
to determine the coagulant and chlorine dosage, which takes 
a long time in WTP. As a result, at WTP, a link between 
chlorine dose and coagulant dose must be established. Oper-
ators of WTP will be able to use the developed relationship 
to select the optimum dose.

Similarly, relation between chlorine dose and coagulant 
dose, which is quite simplified by various nth degree expres-
sions as shown in Eq. 1, 2 and 3.

where y = chlorine dose and z = coagulant dose in mg/L.

(1)y = −0.00046 × z + 1.6

(2)y = 3.5 × 10−6 × z2 − 0.001 × z + 1.9

(3)
y = −3.5 × 10−8 × z3 + 1.4 × 10−5 × z2 − 0.0017 × z + 1.9

Fig. 3   Comparison of best CCDNN3 models during testing period

Table 3   Standard statistics of 
RBFNN models during the 
training and testing period

ANN model Training period Testing period

x̄ σ ɣ1 ɣ2 x̄ σ ɣ1 ɣ2

Observed values 1.909 0.2088 2.0978 12.314 1.954 0.171 2.533 12.390
RBFNN1 SF = 0.1 1.910 0.137  − 1.967 15.718 1.962 0.120  − 2.438 12.287
RBFNN2 SF = 0.1 1.910 0.044  − 4.286 62.155 1.954 0.036  − 1.713 17.667
RBFNN3 SF = 0.1 1.910 0.026 3.027 98.898 1.953 0.026 2.032 21.046
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Fig. 4   a Error statistics of 
RBFNN models during test-
ing period. bTime series 
of RBFNN3 model during 
testing period, cscatter plot of 
RBFNN3 model during testing 
period
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5 � Development of Graphical User Interface

In order to transfer the modelling knowledge to the field, 
GUI software has been developed. The developed GUI 
will provide a useful tool to plant operators and managers 
for deciding required chlorine and coagulant dose. GUIs 
for prediction chlorine dose in WTP was developed using 
the best model. The GUI was developed in MATLAB soft-
ware. Determination of chlorine dose is an essential aspect 
in WTP. It decides the concentration of residual chlorine 
in the outgoing water of WTP. In India, most of WTP 
operators provide higher chlorine dose for maintaining a 
high level of residual chlorine in WDN. The more chlorine 
consumption creates many health problems, hence there 
is need to apply optimum chlorine dose. The GUI will be 
useful for the determination of chlorine dose at WTP.

1.	 Run the CCDNN model.
2.	 Enter the value of coagulant dose applied at WTP in 

mg/L.
3.	 Enter the value of outlet water turbidity (NTU).
4.	 Entre the value of desirable residual chlorine at the out-

let of WTP so that minimum residual chlorine main-
tained at the end of WDN.

5.	 After entering all data, click on ‘ Chlorine Dose’ button.
6.	 Within few seconds, chlorine dose value will be dis-

played in output window (Fig. 5).

Developed GUIs was definitely helpful for WTP oper-
ators and managers to plan the short term and long-term 
activities.

6 � Conclusion

Soft computing, through the use of ANNs plays a cru-
cial role in the prediction and interpretation of coagulant 
and chlorine doses in water treatment plants. By handling 
uncertainties, modeling non-linear relationships, integrat-
ing diverse data sources, optimizing model parameters, 
and enhancing interpretability, soft computing provides a 
powerful toolkit for improving water treatment processes. 
This results in more accurate, reliable, and actionable dose 
predictions, ultimately leading to better water quality and 
more efficient treatment operations. Numbers of CCDNN 
models are developed for prediction of chlorine dose. The 
input parameters viz., Turbidity of the outlet water, residual 
chlorine, and coagulant dose are used for ANN modeling. 
The selected input parameters are closely related to the chlo-
rination and coagulation process. Prediction efficiency of 
RBFNN and GRNN models reduces as SF rises. In RBFNN 
and GRNN models prediction efficiency decreases as SF 
increases. In the RBFNN model, however, there is clear 
superiority in prediction, with SF ranging from 0.1 to 1. 
Such relationships are useful for deciding optimum chlo-
rine dose or coagulant dose. It is also found that the range 

Fig. 5   Screen shot of GUI for 
CCDNN (RBNN3 (SF = 0.1)) 
model
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of chlorine dose is less as compared to the coagulant dose. 
The relation between them is developed by CCDNN model 
in which chlorine dose predicted with the help of coagulant 
dose showed R = 0.99 by RBFNN.
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