Ref.No. CEA/CED/TESTING/17-18/

Date: - 02/03/2018.

Name of Agency: M/S Shree SatyaSaibaba Constructions, Latur.

Subject: - Concrete Mix Design for M-20.

Sir,

With reference to your letter, we have made concrete mix design of M20 and compressive strength of concrete at the age of 28 days is as given below. The Mix design for 50% Crushed sand + 50% Natural sand and 100% Crushed Sand of M20 grade of concrete. We are suggesting you to adopt Trial Mix No. - II and III respectively.

Cement	Work ability	Compressive Strength								
in kg	Water in kg	Crushed Sand kg	Natural Sand kg	Admixtu re in kg	Coarse Aggregate (kg)		W/C	(CF)	(N/mm ²)	
					20mm (60%)	10mm			7	28
375	187.15	377.28 (50%)	377.29 (50%)	3.74	679.12	(40%) 452.74	0.49	0.86	days 18.41	days 26.67
379	186	920 (100%)		3.60	691	460	0.49	0.90	17.54	27.12

Detailed Concrete mix design report is attached for your reference.

Enclosed: Detailed Testing Report on Concrete Mix Design of M20.

Ref.No. CEA/CED/TESTING/17-18/

Date: - 02/03/2018.

CONCRETE MIX DESIGN FOR M20 CONCRETE

(Ref. - IS - 10262 - 2009 Method)

Name of Party & Address:- M/S Shree SatyaSaibaba Constructions, Latur.

Subject :- Design mix of concrete grade M-20

Name of work: Construction of Viaduct at KM 120 to 124 at Ahmednagar-Beed-Parali Section.

Testing Charges: Rs. 20,000/-Paid Vide Receipt No.: - 00077

Date: - 24/01/2018.

CONCRETE MIX DESIGN M20 A] DESIGN STIPULATIONS:

a) Characteristic compressive strength Required in the field at 28 days

b) Maximum size of aggregate

c) Workability of concrete d) Compaction factor

e) Slump value

f) Degree of Quality control

g) Type of Exposure

20 N/mm²

20 mm

= Good

0.89

 $= 97 \, \mathrm{mm}$ = Good

= Moderate

BJ TEST DATA FOR MATERIALS:-

1] Cement

a) Type of cement

b)) i) 7 days compressive strength of cement ii) 28 days compressive strength of cement

c) Specific gravity of cement

d) Fineness of cement (by dry sieve analysis) as per IS 269-1969

e) Initial setting time

f) Final setting time

g) Soundness of cement

= Birla Gold = OPC - 43 Grade

 $= 27.60 \text{ N/mm}^2$

 $= 43.00 \text{ N/mm}^2$

= 3.15

= 1 %

87 min

 $= 185 \, \text{min}$

 $= 1 \, \text{mm}$

College of Engineering Ahmednagar

2] Aggregate and Sand -

Coarse	Aggregate	Fine Agent			
20 mm	10 mm				
2.49	2.97		- Sund		
1.30	1.10		2.73		
8.04		0.88	1.30		
17.00					
	20 mm 2.49 1.30	2.49 2.97 1.30 1.10 8.04 13.15	20 mm 10 mm Crushed Sand 2.49 2.97 2.78 1.30 1.10 0.88 8.04 13.15		

a) Coarse Aggregate:-

IS Sieve Size	% Passing				
90	20 mm	10 mm			
80 mm 40 mm	100	100			
The state of the s	100	100			
20 mm 10 mm	92.40	100			
	1.50	38.70			
4.75 mm	0.18	0.40			
2.36 mm		0.09			
Pan					

b) Fine Aggregate:-

i) Crushed Sand: Sample= 2000 gms

Pan Weight

Dampie 2000	gins	
IS Sieve size	Percentage Passing	
10 mm	100	
4.75 mm	98.13	Cons
2.36 mm	70.68	Confirming to
1.18 mm	37.93	Grading Zone – I
0.600 mm	28.95	Of Table 4 of I.S: 383:1970
0.300 mm	18.98	_ 363.19/0
0.150 mm	14.33	
Retained weight on fo	ollowing sieves:	
0.75 mm (weight)	29.5 gms	-
Don Will	0	

Fineness Modulus = 3.31

ii) Natural Sand:-

Dr. Vithalrao Vikhe Path College of Engineering Ahmednagar IS Sieve size

Percentage Passing 10 mm 100

254 gms

Ahmadnaga

4.75 mm	96.00	0 %
2.36 mm	84.00	Confirming to
1.18 mm	73.00	Grading Zone – II
0.600 mm	29.50	Of Table 4 of I.S:
0.300 mm	11.00	383 : 1970
0.150 mm		
Retained weight on following	3.50	
0.75 mm (weight) in		
gms	5.50	
Pan Weight in gms	9.0	
ulus = 3.03	9.0	

Fineness Modulus = 3.03

4] TARGET MEAN STRENGTH:-

 $= 20 + 4.0 \times 1.65 = 26.6 \text{ N/mm}^2.$

Water cement ratio = 0.45

1) Water content $= 197 \text{ kg} / \text{m}^3$

2) Sand content = 40 %

3) Entrapped air in concrete = 2 %

5] Requirement per Cu. M. of concrete:-

1) Water content

= 144 Lit

2) Sand content

=40 %

3) Cement content= 385 kg/m³

[By IS 456: 2000 Table No. $05 = 300 \text{ Kg/m}^3$]

4) Entrapped air

= 2 %

6] ACTUAL QUANTITIES REQUIRED FOR CU.M. OF CONCRETE IN KG. Water : Cement : Fine Aggregate: Coarse Aggregate

197: 385.00 :

760.00

: 1140 (20mm = 684 +10 mm=456)

0.535: 1

1.96

2.96

Mix proportion by mass

Note:- After adjustment for absorption & surface moisture.

Dr. Vithairao Vikhe Patil College of Engineering Ahmednagar

Mix No.	Ceme nt in	Sand in %		Quantities of materials per m ³ of concrete							Concrete	
	kg		Crushe d Sand in kg (50%)	Natura I Sand in kg (50%)		earse rate in kg	Water in kg	Adm ixtur e in kg	Corre cted W/C	lity (CF)	Com: Stren	cteristics pressive gth(N/m m ²)
I	385	40	200		20 mm	10 mm					days	28 days
	363	40	380	380	684	456	206	3.85	0.535	0.89		
II	375	40	377.28	377.29	679.12	452.74	107.15			0.09	18.10	26.40
III	340	40	383.29				187.15	3.74	0.50	0.86	18.41	26.67
	2.0	40	303.29	383.29	689.93	459.95	187.15	3.40	0.55	0.90	16.07	25.70

Adopt Trial Mix No. - II:

Water : Cement : Fine Aggregates

:Coarse Aggregate: Admixture

: W/C ratio

187.15 :375.00 : 754.56(Natural Sand-380 + :1132(20mm -679.12 : 3.74

: 0.499

Crushed Sand - 380)+10mm- 452.74)

1 : 2.01: 3.01: 0.499

7] Actual quantities required per batch of cement in kg after adjustment for water absorption and surface moisture.

1) Cement = 50 kg

2) Sand = 100.50 kg (Natural Sand: 50.25 + Crushed Sand: 50.25)

3) Coarse Aggregate = 150.5 kg (20 mm Fraction = 90.3 kg)10 mm fraction = 60.2 kg

4) Water = 24.95 kg

5) Admixture 495gms

6) W/C = 0.499

Tested By

Kawadle

Laboratory In-charge Testing of Materials

H.O.D. Dept. of Civil Engg.

Principal Dr.V.V.P.C.O.E. Ahmednagar

Dr. Vithalrao Vikhe Patil College of Engineering

Ahmednagar