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Inlet water quality fluctuations affect mainly coagulant dose, and outlet water quality of the water treatment plant (WTP).
Many complex physical and chemical processes are involved in WTP and water distribution networks (WDN). These tech-
nologies show non-linear behavior, which is challenging to be described by linear mathematical models. Thus, there is a
need to develop prediction models for coagulation dose. The present study involves the application of cascade feed-forward
neural networks (CFFNN) to predict coagulant dose. CFFNN Model was developed by using the Levenberg-Marquardt
Training Algorithm and Bayesian Regularization Training Algorithm to predict coagulant dose. During the development
of these models, hidden nodes are varied from 15 to 60, and R is found between 0.914 and 0.947. The best results were
obtained by the CFFNN model using the Bayesian Regularization Training Algorithm (CFNNCD2) with hidden node 40,
where R = 0.945 for training and 0.947 for testing.

Keywords: Water quality; water treatment plant; residual chlorine concentration; coagulant dose; chlorine dose

1. Introduction
The routine WTP consists of screening, coagulation-
flocculation (CF), sedimentation, filtration, and disin-
fection units. In India, most WTP operators apply
approximate coagulant dose due to lack of automation
(Kote and Wadkar 2019). Coagulation is a significant
process for drinking water treatment, is deliberated to
withdraw colloidal and fine particles (Bello et al. 2014).
Coagulation dose is essential to minimize the turbidity of
drinking water. Turbidity is present in the drinking water
due to the presence of colloidal and fine suspended mat-
ter and microscopic organisms (Djeddou et al. 2019). The
coagulant is typically determined through laboratory anal-
ysis, which requires a long experimental time in WTP
(Loc et al. 2020). Thus identified operational challenges
such as approximations of dosing and extended period of
experimentation can be handled by developing models for
coagulant dose (Amali et al. 2018). The main component
of the WSS is a WDN which preserves the quality and
quantity of water as well as maintains sufficient pressures
in the distribution of water (Bekkari and Zeddouri 2019).
The physical, operational, and environmental conditions
for WTP and WDN should be analyzed as a crucial part
of a WSS (Abba and Elkiran 2017). The uncertainty level
and risk of time-dependent factors increase with age, which
thereby creates very challenging situations for managers
to plan future short-term and long-term operational and
maintenance protocols for WTP (Asnaashari et al. 2013;
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Ayvaz and Kentel 2015). An effective evaluation of WTP
requires extensive involvement of specialized personnel,
reliable databases, substantial time, application of cutting-
edge technology, and equipment (Ayvaz and Kentel 2015).
Over the last few decades, modeling in WSS has been
shifted from process-based technique to artificial intelli-
gent (AI) techniques (Bowden et al. 2006; Bobadilla et al.
2019; Santos et al. 2019). Because of the growing acces-
sibility of information in the water industry, data-driven
modeling methods are becoming more popular (Chand-
wani V. et al. 2016). Out of the several AI techniques,
artificial neural network (ANN) is the most popular tech-
niques in WSS whereas fuzzy logic, genetic programming,
and model trees (MT) are comparatively new to this sys-
tem (Constans et al. 2003; Wu and Lo 2008; Zeinolabedini
and Najafzadeh 2019). ANNs have been successfully used
in many water supply studies and this was a motivating
factor for its application to the present study (Heddam
et al. 2012; Cuesta and Tau 2014). Drinking water quality
tends to degrade as it passes through distribution sys-
tems owing to: (1) intrusion of contaminated groundwater
through cracks in underground pipes, (2) possibility of
microbial regeneration in stagnant water and formation
of pipe-wall biofilm (Erickson et al. 2017). The adoption
of hygienic processes from treatment to distribution sys-
tem is necessary to prevent waterborne epidemics (Hamed
et al. 2004; Gibbs et al. 2006; Hanbay et al. 2008; Hebati
et al. 2017).
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Furthermore, WTP and WDN include many complex
physical and chemical processes. These processes are non-
linear, which are difficult to be defined by linear mathe-
matical models (Haghiri et al. 2018). Thus, there is a need
to develop prediction models for water quality, coagulant
dose. This evaluation is too expensive for most municipal-
ities. Thus, there is a need for cost-effective soft computing
model for performance evaluation of WTP using inlet
and outlet water quality parameters (Heddam et al. 2012).
This model will help owners/operators to plan effectively
short-term and long-term activities. Therefore, the WTP
operators and related professionals will benefit from this
model in assessing, managing, planning, and budgeting
for the WTP. In the present paper, the Cascade Feed For-
ward Neural Network Water Quality Model was developed
by using Levenberg-Marquardt Training Algorithm and
Bayesian Regularization Training Algorithm to monitor
the water treatment plant. In the present paper, coagulant
dose and performance evaluation of WTP in the farthest
zones in WDN namely Indrayani Nagar WTP, Pimpri
Chinchwad Municipal Corporation (PCMC), Maharashtra,
India is investigated. The present study also involves the
application of ANN model. The methodology adopted for
ANN modeling with modified MATLAB code is explored
in predicting water quality, coagulant dose, with cascade
feed-forward neural networks (CFNN).

2. Material and methods
The data is collected from WTP PCMC for the develop-
ment of the models. It includes mainly 27 water quality
parameters viz., pH, Ca, Cl−, alkalinity, K, TDS, total hard-
ness, turbidity, conductivity, DO, color, Fe, Cr, Al, Mn, F−,
Cu, nitrate, BOD, TSS, phosphate, Ni, Co, detergent, Mo,

B & MPN and coagulant dose, and major water supply
pipelines of Indrayani Nagar (Figure 1). Indrayani Nagar
having a population of 46,242 and has three ESR with
capacity of 0.3, 0.6, and 2.5 ML. The distance of ESR from
the first valve is 9.95 km and detention time of ESR is 3 h.

3. Experimental plan
3.1. Coagulant dose neural network model
Traditionally jar test is used to determine the optimum dose
of coagulant that requires more time (Jayaweera and Aziz
2018; Kim et al. 2014; Swetland et al. 2013). In India,
coagulant dose in a WTP remains constant during certain
periods due to delay in jar testing, which may lead to the
formation of under-dosing and over-dosing of coagulant
dose (Kumpel and Nelson 2013; Krishnaiah et al. 2007;
Kennedy et al. 2015; Koleva 2017). From literature, it is
found that many ANN and fuzzy approaches are available
for the prediction of coagulant dose for a particular WTP
(Librantz et al. 2018; Lee et al. 2004; Muharemi et al.
2019). However, the same approach cannot give the same
prediction efficiency for other WTPs. Therefore, in this
study, CFNN models are developed and applied for pre-
diction of coagulant dose at WTP of PCMC, Maharashtra
(India).

3.1.1. Methodology for coagulant dose neural network
model

Input parameters such as inlet and outlet water turbidity
and output parameter as coagulant dose are identified for
the coagulant dose neural network (CDNN) model. The
CDNN model is established with inlet and outlet water tur-
bidity in the input layer whereas the output layer predicts

Figure 1. Satellite image of Indrayani Nagar, Pune.
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Figure 2. ANN Model for coagulation dose.

coagulant dose as shown in Figure 2. Daily data of input
and output parameters spanning from 1 January 2012 to
31 December 2015 are obtained from the plant laboratory
(Heddam et al. 2011). The database of input and output
parameters required for the ANN modeling consists of
11,688 data points spanning eight data points per day. The
data interval is three hours starting from 7 AM current day
to 7 AM of the next day.

3.2. Analysis of coagulant–turbidity
Coagulation is an essential process of water treatment.
Determination of optimal coagulant dose is vital, as insuf-
ficient dosing will result in a high-value of turbidity in
treated water (Zhang et al., 2013). On the other hand,
doses that are too high can result in high cost and health
problems related to high levels of residual aluminum (if
alum is used as the coagulant). Thus, the turbidity of water
is an assessment parameter for the coagulation process.
Coagulant–turbidity dataset is used for the prediction of
optimum coagulant dose in WTP. This dataset has 11688
data points (1 January 2012 – 31 December 2015) which
include eight readings per day at an interval of three
hours namely inlet water turbidity, outlet water turbidity,
and coagulant dose. As we know determination of coag-
ulant dose in the laboratory requires nearly three hours,
the inlet water turbidity, outlet water turbidity, and coag-
ulant dose observed at the interval of three hours were
collected.

The standard statistics of 3 hourly inlet water turbid-
ity, outlet water turbidity, and coagulant dose are given
in Table 1. The highest and lowest values of turbid-
ity observed are 208 and 4 mg/L, respectively. And, the
highest and lowest values of coagulant dose observed
are 379.5 and 5.52 mg/L, respectively. It is seen that the

Table 1. Standard statistics of inlet water turbidity, outlet
water turbidity, and coagulant dose.

Standard
statistics

3 hourly
Inlet water
turbidity
(mg/L)

3 hourly
outlet water

turbidity
(mg/L)

3 hourly
Coagulant

dose (mg/L)

Mean (x̄) 13.967 1.635 20.157
Standard

deviation (σ )
23.212 0.394 32.486

Skewness (G1) 5.332 2.562 5.284
Kurtosis (G2) 32.213 14.812 31.601

value of G1 of inlet water turbidity and coagulant dose
are near to each other, which implies that the pattern
of data distribution of both closely matches. The close
match pattern of data distribution indicates applied coagu-
lant dose nearly proportional to inlet water turbidity. Also,
inlet water turbidity, outlet water turbidity, and coagu-
lant dose show high skewness indicating that the data is
asymmetrical whereas kurtosis has the leptokurtic distri-
bution of data with long and fat tail and higher and sharper
central peak.

The observed inlet water turbidity and coagulant dose
at WTP for four years is shown in Figure 3(a,b). It is seen
that the pattern of inlet water turbidity and coagulant dose
is nearly matching because coagulant dose at the WTP is
provided as per variation in the raw water turbidity Kim
and Parnichkunet 2017). Higher the turbidity, the appli-
cable coagulant dose is also higher. However, it can also
be seen that more peak values are observed for inlet water
turbidity during the year 2015 which may be due to high
turbidity present in the Pawana river. This high turbidity in
the Pawana River may be due to rapid development along
the bank of the river, high rainfall, industrial activities, and
many more other activities.
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Figure 3. (a) Time series plot of inlet water turbidity. ( b) Time series plot of coagulant dose.

3.3. Input and training algorithm identification
Many researchers used input parameters viz. turbid-
ity of inlet and outlet water, observed coagulant dose,
pH of water for ANN modeling of coagulant dose.

Input parameters such as inlet and outlet water turbid-
ity and output parameter such as coagulant dose are
identified for ANN modeling (Pitta and Babu 2010;
McCoy and VanBriesen 2012; Gamboa-Medina and Reis
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Luisa 2017; O’Reilly et al. 2018; Saberi-Movahed et al.
2020). Daily data of input and output parameters span-
ning 4 years are obtained from the plant laboratory.
The database of input and output parameters required
for the ANN modeling consisted of 11,688 data points.
Diversified training algorithms such as Bayesian regu-
larization (BR), Levenberg-Marquardt (LM), Randomized
polynomial (RP), BFGS (Broyden–Fletcher–Goldfarb–
Shanno), one step secant (OSS), Conjugate gradient back-
propagation with Fletcher-Powell (CGBF), Conjugate gra-
dient back-propagation (CGB), Variable learning rate gra-
dient descent (VLRGD), and gradient descent (GD) are
used for the development of ANN models. It is observed
that BR and LM training algorithms produced excellent
predictions as compared to other training algorithms. Fur-
ther best performed LM and BR training algorithms are
used for the development of the best FFNN model and
CFNN model by a varying number of hidden layers, and
hidden nodes and epochs.

3.4. Feed forward neural network coagulant dose
model

The number of training algorithms is analyzed for the pre-
diction of coagulant dose. Summary of the performance
of training algorithms for model development is shown in
Figure 4. It is noticed that most training algorithms showed
good performance while some model showed a negative
correlation thereby indicating in-capabilities in modeling
(Raduly and Gernaey 2007; Heddam and Dechemi 2015;

Saha et al. 2017; Najafzadeh and Saberi-Movahed 2018,
2019). From Figure 4 it observed that BFG, NRP (Neonatal
Resuscitation Algorithm), CGB, CGF, OSS, GDX, GDM
(gradient descent with momentum), and GD required only
one epoch and 15 hidden nodes; whereas for LM and BR
training algorithm epoch is varied from 12 to 7228 and hid-
den node varied from 15 to 60. Still, FFNNCD model with
LM (R = 0.944) and BR (R = 0.945) training algorithms
are more effective than other training algorithms.

3.5. Feed forward neural network coagulant dose
model using Levenberg-Marquardt training
algorithm

FFNN coagulant dose model using LM training algorithm
(FFNNCD1) is developed with one hidden layer in MAT-
LAB software. Model was established with LM that
updates weight and bias values conferring to LM opti-
mization. LM is frequently the fastest back-propagation
algorithm and is extremely endorsed as a primary-choice
supervised algorithm, although it does require more mem-
ory than other algorithms. This model gave maximum ‘R’
with 60 numbers of hidden node and properties are results
in Table 2.

Authentication vectors were used to stop training ini-
tially if the network performance on the validation vectors
fails to recover or remains the same for determiningepochs
in a row. Test vectors are used as a further check that
the network is generalizing well but no effect on train-
ing. The time series and scatter plot of FFNNCD1 (2-60-1)

Figure 4. Performance of training algorithms for FFNNCD model.
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Figure 5. (a) Time series plot of coagulant dose for FFNNCD1 (2-60-1) model. (b) Scatter plot of observed verus predicted coagulant
dose for FFNNCD1 (2-60-1) model during training and testing period.

Table 2. Properties of best FFNNCD1 model.

Type of
network

Training
algorithm

No of
Epoch

No of hidden
node R MSE

FFNN LM 26 60 0.944 185.09

model during the training and testing period shown in
Figure 5(a,b) indicate a good fit. Peak values of coagulant
dose are well captured. It could be due to the most peak
values included in dataset training. Thus, rigorous training
has captured this trend but failed in the testing period. This
result shows that if the data series are not following the
normal distribution, but changing the training algorithm
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Table 3. Standard statistics of FFNNCD1 (2-60-1) model.

Training period Testing period
ANN
model x̄ σ G1 G2 x̄ σ G1 G2

Observed
values

20.157 32.486 5.284 31.601 8.899 1.493 1.233 0.171

FFNNCD1
(2-60-1)

20.109 30.711 5.361 33.919 9.067 2.280 1.212 1.851

and by rigorous training, slightly better results only could
be achieved, even though low and average values are well
captured by rigorous training of network.

The standard statistics of FFNNCD1 (2-60-1) model is
shown in Table 3, where observed and predicted x̄ and G1
are closely matching during training and testing periods.
The percentage change between observed and predicted σ

values had 5.47% and 52.75% during training and test-
ing period, respectively. Similarly, the percentage change
between observed and predicted G2 values had 7.33% and
980.51% during training and testing period, respectively.

3.6. Feed forward neural network coagulant dose
MODEL using bayesian regularization training
algorithm

FFNN water quality model using BR training algorithm
(FFNNCD2) model is created with one hidden layer in
MATLAB software. By varying values of the hidden
node after ending epochs, different R and MSE values are
obtained. It is distinguished that hidden nodes are increased
from 5 to 15 where R and MSE values were changed
accordingly. Though, after changing hidden nodes from 20
to 60, R remains identical. Similarly, it is observed that
the best prediction obtained against hidden node 50 with
R for training = 0.943 and R for testing = 0.945. In this
case, the network response is satisfactory, and validation
can be used for entering new inputs. The Bayesian meth-
ods are able to efficiently address the issue of over fitting
and penalizes complicated models. The Bayesian methods
include probably distribution of network weights in com-
parison to standard network training in which optimum
weights are selected by minimizing an error algorithm.
This algorithm utilizes the Jacobean matrix to calculate
the output as a medium or total of square error (Zhang
et al. 2011; Wang et al. 2017; Najafzadeh and Zeinolabe-
dini et al. 2019). The BR algorithm feature can train any
network as long as its derivative features include weight,
net input and transfer algorithms.

The time series and scatter plot of FFNNCD2 (2-50-1)
model during testing period shown in Figure 6(a,b) indi-
cates average fit. Peak values are poorly captured because
most of the time on WTP observed coagulant dose is
kept constant. Thus, rigorous training has captured this
trend but failed in the testing period, even though low
and normal values are well captured by rigorous training

Table 4. Standard statistics of FFNNCD2 (2-50-1) model.

Training period Testing period
ANN
model x̄ σ G1 G2 x̄ σ G1 G2

Observed
values

20.157 32.486 5.284 31.601 8.899 1.493 1.233 0.171

FFNNCD2
(2-50-1)
model

20.175 30.811 5.314 33.240 9.051 2.302 1.200 1.612

of network (Wu and Lo 2010). The standard statistics of
FFNNCD2 (2-50-1) model is shown in Table 4, where
observed and predicted x̄ and G1 are close during the train-
ing and testing period. The percentage change between
observed and predicted value of σ = 5.16 and 54.21% dur-
ing the training and testing period, respectively. Similarly,
the % change among observed and predicted G2 values had
5.19% and 841.39% during the training and testing period
correspondingly.

3.7. Cascade feed forward neural network coagulant
dose model

The CFNN are similar to feed forward networks, but
include a weight connection from the input to each layer,
and from each layer to the successive layers. For example,
a three-layer network has connections from layer 1 to layer
2, layer 2 to layer 3, and layer 1 to layer 3. The 3-layer
network has connections from the input to all 3 layers.
The supplementary networks might progress the speed at
which the network acquires the desired relationship. Sum-
mary of the performance of training algorithms is shown
in Figure 7. It is noticed that many training algorithms
showed good performance while some models have neg-
ative correlation thereby indicating the in-capabilities in
modeling. From Figure 7, it is observed that BFG, NRP,
CGB, CGF, OSS, GDX, GDM, and GD required only one
epoch and 15 hidden nodes; whereas LM and BR training
algorithm required epoch 27–700 epochs and 15–60 hidden
nodes.

However, FFNNAD model with LM algorithm
(R = 0.943) and BR algorithm (R = 0.947) is more effec-
tive than other training algorithms.

3.8. Cascade feed forward neural network coagulant
dose model using Levenberg-Marquardt training
algorithm

CFNN coagulant dose model (CFNNCD1) developed
with LM training algorithm that updates weight and
bias values according to LM optimization. Gauss–Newton
algorithm and steepest descent method are building block
for LM training algorithm. Gauss–Newton algorithm pro-
vide speed and steepest descent method establish stability
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Figure 6. (a) Time series plot of coagulant dose for FFNNCD2 (2-50-1) model. (b) Scatter plot of observed verus predicted coagulant
dose for FFNNCD2 (2-50-1) model during training and testing period.

in LM training algorithm. It is stronger than the Gauss–
Newton algorithm as it can converge well, in many cases
even if the error surface is far more complex than the
quadratic situation. This model gave maximum ‘R’ with
60 numbers of hidden node and properties are mentioned
in Table 5.

Table 5. Properties of best CFNNCD1model.

Type of
network

Training
algorithm

No of
Epoch

No of hidden
node R MSE

FFNN LM 36 60 0.943 59.22
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Figure 7. Performance of training algorithms for CFNNCD model.

During the development of this model hidden nodes are
provided with 15, 20, 25, 30, 40, 50 and 60, it is found that
R value ranged from 0.927 to 0.943 and MSE value ranged
from 59.22 to 130.94. The best results were obtained
with hidden node = 60 where R = 0.943 in training and
0.943 for testing. The time series and scatter plot of CFN-
NCD1 (2-60-1) model during the testing period shown in
Figure 8(a,b) indicates average fit. Peak values are poorly
captured because most of the time on WTP observed
coagulant dose is kept constant.

In this way, thorough training has identified this pat-
tern however failed in testing period, despite the fact that
low and normal values are all around caught by thorough
training of network. The standard statistics of CFNNCD1
(2-60-1) model is shown in Table 6, where observed and
predicted x̄ and G1 are close during the training and testing
period. The percentage change between observed and pre-
dicted σ values had 5.16% and 54.21% during the training
and testing period, respectively. Similarly, the percentage
change between observed and predicted G2 values had
5.19% and 841.39% during the training and testing period,
respectively.

3.9. Cascade feed forward neural network coagulant
dose model using Bayesian regularization training
algorithm

CFNN water quality model using BR training algorithm
(CFNNCD2) is created with one input layer, one hidden
layer and one output layer in MATLAB software that offers

Table 6. Standard statistics of CFNNCD1 (2-60-1) model.

Training period Testing period
ANN
model x̄ σ G1 G2 x̄ σ G1 G2

Observed
values

20.157 32.486 5.284 31.601 8.899 1.493 1.233 0.171

CFNNCD1
(2-60-1)
model

20.223 30.694 5.339 33.711 9.150 1.888 1.983 4.348

a platform for the simulation application. During the devel-
opment of this model hidden nodes are provided with 15,
20, 25, 30, 40, 50 and 60, it is found that the best results
were obtained with hidden node 40 where R is for training
(0.945), and for testing (0.947). The time series and scatter
plot of CFNNCD2 (2-60-1) model during the testing period
are shown in Figure 9(a,b).

The prediction of coagulant dose by the developed
ANN models during the testing period are carried out
with 248 data points. In Figure 9, the predicted values of
coagulant dose are not following the pattern of observed
coagulant dose from 60 to 90 data points during the year
2016. These changes are obtained due to a large range of
values of inlet water turbidity and coagulant dose during
training of neural networks. In spite of the large variations,
the mean value of observed coagulant dose and predicted
coagulant dose is very close to each other (Liu et al. 2018).

The standard statistics of CFNNCD2 (2-40-1) model is
shown in Table 7, where observed and predicted x̄ and G1
are close during training and testing period. The % change
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Figure 8. (a) Time series plot of coagulant dose for CFNNCD1 (2-60-1) model. ( b) Scatter plot of observed verus predicted coagulant
dose for CFNNCD1 (2-60-1) model during training and testing period.

between observed and predicted σ values had 5.10% and
53.76% during training and testing period, respectively.
Similarly, the % change between observed and predicted
G2 values had 7.37% and 574.24% during training and
testing period respectively.

4. Conclusion
1 For the development of FFNN and CFNN models,

the best performed LM and BR training algorithms
are used among all models. During the develop-
ment of these models hidden nodes are varied
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Figure 9. (a) Time series plot of coagulant dose for CFNNCD2 (2-40-1) model. (b) Scatter plot of observed verus predicted coagulant
dose for CFNNCD2 (2-40-1) model during training and testing period.

from 15 to 60 and R is found between 0.914
and 0.947. It is observed that the best results are
obtained by CFNNCD2 model with hidden node
40, where R = 0.945 for training and 0.947 for
testing.

2 Standard statistics of CFNNCD2 (2-40-1) model is
quite closer to the observed series as compared to
other models. This showed the trend and pattern of
coagulant dose by CFNNCD2 model were mapped
closely with the observed series as compared to
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Table 7. Standard statistics of CFNNCD2 (2-40-1) model.

Training period Testing period
ANN
model x̄ σ G1 G2 x̄ σ G1 G2

Observed
values

20.157 32.486 5.284 31.601 8.899 1.493 1.233 0.171

CFNNCD1
(2-40-1)
model

20.121 30.830 5.373 33.930 9.063 2.295 1.312 1.155

other ANN models. The standard statistics of the
CFNNCD2 model exhibited wasfound that values
of G1 (Skewness) and G2 (Kurtosis) of predicted
series is closely associated with observed series of
coagulant dose.

3 The performance CFNNCD2 (2-40-1) model could
be improved because both the hidden and the out-
put layer had a weighted connection with input
layer. Similarly, the BR training algorithm pro-
vides a crucial benchmark for completing the train-
ing step and counteracts the network’s overtrain-
ing. This potential of the BR training algorithm
produces good prediction with adaptive and con-
vergent network.

4 Peak values are poorly captured because most of
the time on WTP, the observed coagulant dose is
kept constant due to lack of automation. In spite of
the large variations, the mean value of the observed
coagulant dose and predicted coagulant dose are
very close to each other. It is seen that the value
of G1 of inlet water turbidity and coagulant dose
are near to each other, which implies that the pat-
tern of data distribution of both closely matches.
The close match pattern of data distribution indi-
cates applied coagulant dose nearly proportional to
inlet water turbidity.

The results of the best ANN models are shown in
Table 8 during the testing period. The predictions of the
CFNN model values are better than that of the FFNN.
There is a better consensus among the results of the CFNN
model than the FFNN model. In the test period, the MSE
reduction of the CFNN model amounted to almost 46.85%.
In addition, there is a small improvement over the FFNN
model in the forecast results from the CFNN model for
the coagulant dose value during the testing period. The

Table 8. Comparison of performance of best ANN models
during testing period.

ANN models Training algorithm R MSE

FFNNCD1 (2-60-1) LM 0.944 185.09
FFNNCD2 (2-50-1) BR 0.945 113.13
CFNNCD1 (2-60-1) LM 0.943 59.22
CFNNCD2 (2-40-1) BR 0.947 99.28

results using the CFNN model are very near to the observed
values. Therefore, the CFNN model is more capable and
precise in the modeling of the coagulation process.

Nomenclature

R: Coefficient of correlation
R2: Coefficient of determination
x̄: Mean
σ : Standard deviation
G1: Skewness
G2: Kurtosis
ANN: Artificial neural networks
BR: Bayesian regularization
LM: Levenberg-Marquardt
BOD: Bio-chemical oxygen demand
COD: Chemical oxygen demand
CFNN: Cascade feed forward neural network
CDNN: Coagulant dose neural network
CCDNN: Coagulant and chlorine dose neural net-

work
CFNNCD1: Cascade feed forward neural network

coagulant dose model using Levenberg-
Marquardt training algorithm

CFNNCD2: Cascade feed forward neural network
coagulant dose model using Bayesian reg-
ularization training algorithm

FFNNCD1: Feed forward neural network coagulant
dose model using Levenberg-Marquardt
training algorithm

FFNNCD2: Feed forward neural network coagulant
dose model using Bayesian regularization
training algorithm
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