
ORIGINAL RESEARCH

Improved decision making in multiagent system for diagnostic
application using cooperative learning algorithms

Deepak A. Vidhate1 • Parag Kulkarni2

Received: 17 May 2017 / Accepted: 22 December 2017

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2017

Abstract Cooperative nature in multiagent system incul-

cates more understanding and data by sharing the resour-

ces. So cooperation in a multiagent system gives higher

efficiency and faster learning compared to that of single

learning. However, there are some challenges in front of

learning in a cooperative manner in the multiagent system

that needs to pay attention. Making effective cooperative

decisions that correctly and efficiently solve interacting

problems requires agents to closely cooperate their actions

during problem-solving. So various issues related with

cooperative machine learning are implemented. Rein-

forcement learning is mainly implemented with game

theory and robot applications. Paper gives the new

approach for reinforcement learning methods applied to the

diagnostic application. The novelty of the approach lies in

the amalgamation two methods i.e. weighted strategy

sharing with expertness parameter that enhances the

learning performance. Weighted strategy method is

implemented with Sarsa (k), Q(k) and Sarsa learning for

cooperation between the agents that was not implemented

previously. Cooperative learning model with individual

and cooperative learning is given in this paper. Weighted

Strategy Sharing algorithms calculate the weight of each Q

table based upon expertness value. Variation of WSS

method with Q-learning and Sarsa learning is implemented

in this paper. The paper shows implementation results and

performance comparison of Weighted Strategy Sharing

with Q-learning, Q(k), Sarsa learning and Sarsa(k)

algorithms.

Keywords Cooperative learning � Q learning �
Reinforcement learning � Sarsa learning � Weighted

strategy sharing

1 Introduction

In the application of retail market that has a number of

shops all over state retailing many items or products to a

large number of consumers. Each operation details i.e.

customer ID, date items bought with the amount, the sum

of money spent are noted down at the sale windows. It

produces the huge bulk of data every day. The retailer

needs to forecast who likely consumers for a particular

item are. A simple algorithm is not sufficient for this pre-

diction. There is need to analyze the accumulated data to

convert into useful information that can be further useful

for the item forecast. It is not known in advance which

consumers are probable to buy this product, else another

product [1]. It is understood that there is a process that

gives details the data that is observed. But details of the

underlying process are completely unknown. In the appli-

cation of consumer behavior, it is not totally arbitrary [2].

Consumers are not purchasing the item arbitrary. When

consumer purchases cold drinks, they may purchase chips;

or consumer purchases ice cream in summer and hot tea in

winter. There are fixed models in the data. It might not be

possible to distinguish the entire procedure, but still, a good

and useful estimation can be created. That estimate may

not make clear everything, but may still be able to focus on

& Deepak A. Vidhate

dvidhate@yahoo.com

Parag Kulkarni

parag.india@gmail.com

1 Department of Computer Engineering, College of

Engineering, Shivajinagar, Pune, India

2 iKnowlation Research Labs Pvt. Ltd, Shivajinagar, Pune,

India

123

Int. j. inf. tecnol.

https://doi.org/10.1007/s41870-017-0079-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-017-0079-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-017-0079-7&domain=pdf
https://doi.org/10.1007/s41870-017-0079-7

some part of the data [3]. Though identifying the total

procedure may not be possible, but still, model or regu-

larities can be identified. Such models may help to identify

with the process and make a forecast. Forecasting is useful

keeping in view that the near upcoming will not be much

different from the history and future forecast can also be

likely to be right [4].

Many real-world applications are involved over one

entity for an increase an outcome. In a situation of retail

stores in which store A trade clothes, store B trade jewelry,

store C trade footwear. In order to develop a single system

to intelligent (certain aspects of) the marketing procedure,

an internal of all shops A, B, C, and D can be estimated.

The only feasible answer is to permit a mixture of shops to

build their individual strategies that precisely characterize

their objectives and benefits [5]. They must then be com-

bined into the system with the aid of some of the tech-

niques. The objective of each shop is to increase the

revenue by maximizing sale i.e. yield maximization.

Diverse factors are to be thought in this: the dependency of

items, special discount policy, dynamic nature of seasons,

concession, market situation etc. Different shops need to

coordinate with one another for an increase in profit at

various conditions. Numerous autonomous tasks that can

be handled by individual agents could benefit from coop-

erative nature of agents [5, 6].

The novelty of the approach is clearly understood by three

major contributions made by the paper: first, reinforcement

learning methods are applied to the diagnostic application. In

the literature, it is found that reinforcement learning is mainly

implemented with game theory and robot applications. Sec-

ondly, it combines two methods i.e. weighted strategy sharing

with expertness parameter to enhance the performance. Third,

weighted strategy method is implemented with Sarsa (k), Q(k)

and Sarsa learning for cooperation between the agents that was

not implemented previously.

The paper is ordered: Sect. 2 provides a concept about

cooperative multiagent agent learning, Sect. 3 describes

various Weighted Strategy Sharing methods using Q &

Sarsa Learning. Section 4 gives experimental setup and

Sect. 5 put up the result comparisons of all four algorithms

i.e. Weighted Strategy Sharing using Q Learning, Weigh-

ted Strategy Sharing using Sarsa Learning, Weighted

Strategy Sharing using Q(k) Learning and Weighted

Strategy Sharing using Sarsa(k) Learning. Final concluding

remark and future scope are mentioned in conclusion.

2 Cooperative learning algorithms

Several multiagent learning systems are designed to pace

up learning and/or to increase precision. Learning in MASs

can be seen from different points of view. In the simplest

form, each agent just learns individually, without any

attention to others and without any cooperation [7]. But, in

a multiagent system, an agent’s knowledge may have a

positive effect on other agents’ learning and knowledge

acquisition. Therefore, cooperative learning may result in

higher efficiency [8].

For different people or organizations with different

goals and information, an interaction can be done using

a multiagent system. These agents may cooperate to

achieve the common goal by sharing their exper-

tise/knowledge. Such teamwork would lead to improved

performance. Cooperative nature of multiagent system

inculcates more understanding and information by shar-

ing the resources. So teamwork in a multiagent system

gives higher efficiency and faster learning compared to

that of single learning. Hence working in a cooperative

team has significant advantages [8, 9]. Making effective

cooperative decisions that correctly and efficiently solve

interacting problems requires agents to closely cooperate

their actions during problem-solving. So various issues

related with cooperative machine learning are studied

and implemented.

Agents in a multi-agent scheme are trained from all of

the agents in strategy-sharing algorithms. Q learning

algorithm of Reinforcement Learning is responsible for

independent agent learning [10]. Q tables of other agents

are compiled together by an agent to calculate their new

policy as the average of Q tables. The agents do not

contain the capability to explore expertise agents and

information of all of the agents is uniformly utilized.

The only average of the Q tables is not useful if they

contain dissimilar ability with expertise. After every

cooperation step, The Q-tables of the agents turns out to

be equivalent. Agents’ flexibility to changing situation is

decreased due to this [11]. A strategy-sharing method

depends on expertise detection is proposed to overcome

these limitations. In this, the agents allocate some weight

to the other agents’ Q-tables is used [11, 12].

3 Weighted strategy sharing methods

In previous work on multiagent learning, coordination

between agents is one way among different agents. All of

the agents can discover somewhat from one another; even

from the non-expertise agents also in the real world

applications. Weighted strategy sharing for cooperative

learning is implemented. Each agent allocates a weight to

the information of another agent so as to use it depending

on their expertise [13].

Int. j. inf. tecnol.

123

3.1 Weighted strategy sharing using Q learning

It is understood that elements of a collection of n uniform

agents are training in some situation in WSS method.

Agents actions do not modify the others learning situation.

Two modes of learning are used i.e.: Independent Learning

and Cooperative Learning Mode. Initially, all agents are in

the Independent Learning form. Agent i trains ti learning.

Training experiment begins from an arbitrary state and

stops when the agent arrives at destination state. All agents

stop the Individual Learning mode at the time when a

particular amount of independent experiments are per-

formed (that is referred as coordination time) [14]. Then an

agent switches to Cooperative Learning form. Each learner

allocates some weight to another agent as per their exper-

tise values in the Cooperative Learning form. Then, it

calculates a weighted mean of the other agents’ Q tables.

Resultant Q table is found out that is used as its new Q

table [15, 16].

3.1.1 Independent learning based on Q-learning

The agent obtains reinforcement after completion of every

action. The Q-table (state-action), that calculates the long-

term discounted reinforcement for every state/action cou-

ple to determine the trained strategy of the agent [14–16].

In Q-learning, action selection by an agent with the prob-

ability P given is by:

P aijxð Þ ¼ eQðx;aiÞ=t
P

eQðx;akÞ=t
; ð1Þ

where t regulate the arbitrariness of the choice. The agent

carries out the action obtained an instantaneous reward r,

shift to the subsequent state y and modify Q as:

Qnew
i xi; aið Þ :¼ 1 � bið ÞQOld

i xi; aið Þ þ bi ri þ ciV yið Þð Þ
ð2Þ

where b is the learning rate, (c\ 0 c\ 1) is a discount

parameter. Q is enhanced steadily and the agent learns

when it explores the state space.

3.1.2 Measuring the expertness values

Expertise is defined as the ‘‘personification of knowledge

and skills within persons’’. In human societies, it is

observed that a learner assesses the others’ understanding

with respect to their expertise. Each learner attempts to the

best assessment technique to find out how much the others’

understanding is trustworthy. In this WSS Method also, the

weight of each agent’s understanding is carefully

calculated in order that the team training competence is

increased. This principle assigns extra weight to such

agents who have acquired more rewards and fewer pun-

ishments [17]. This is represented as a total of the reward

signals

eNrm
i ¼

Xn

i¼1

riðtÞ ð3Þ

where ri(t) is the amount of reinforcement signal that

environment gives to agent i in step t. It is referred as

Normal expertness as it is the just algebraic sum of rewards

[18].

3.1.3 Weight-assigning mechanism

Q-tables of more expert agents is used by the learner to

reduce the amount of coordination necessary to swap Q-

tables. Hence, fractional weights of the inexpert agents are

treated as zero. Learner, i assign the weight to the under-

standing of agent j as:

Wij ¼
1 � ai
ej � eiP
ek � ei

0

8
><

>:

if i ¼ j

if ej\ ei

otherwise

; ð4Þ

where 0\a\ 1 is the impressibility parameter to prove

agent i depend on another agents information. ei and ej are

the expertise value of agents i and j, and n is the total

number of the agents. Weights assigned by each agent to

other agent’s information are shown in Fig. 1. w12 is the

weight assign by agent 1 to the information of agent 2 and

w21 is the weight assign by agent 2 to the information of

agent 1 [18, 19].

Fig. 1 Cooperative learning by weighted strategy sharing

Int. j. inf. tecnol.

123

Algorithm 1: WSS algorithm for agent ai

1. if InIndependentLearning Mode then
2. si := GetCurrentState()
3. ai := ActionSelection()
4. Action(ai)
5. ri := Reward()
6. yi := GoToNextState()
7. v(yi) := Maxb ∈ Q(yi,b)
8. Qi

new(si,ai) := (1-βi)Qi
Old(si,ai)+βi(ri +γiV(yi))

9. ei := UpdateExpertness(ri)
10. else {Cooperative Learning}

11. Loop j := 1 to n
12. calculate normal expertise as ej

Nrm := ∑ ()=1

13. Qi
new := 0

14. Loop j := 1 to n
15. Wij := ComputerWeights(i,j,e1…...en)
16. Qj

old := GetQ(Aj)
17. Qi

new := Qi
new + Wij * Qj

old

Variations in the Weighted Strategy Sharing method has

been introduced by replacing Q learning under Independent

Learning by Sarsa learning, Q(k) learning and Sarsa(k)

learning algorithms [10, 11]. Results of each algorithm

have been found and compared.

3.2 Weighted strategy sharing using Sarsa learning

Weighted strategy sharing (WSS) using Sara for coopera-

tive learning is implemented. Every agent allocates a

weight to their information and utilizes it depending on the

amount of its teammate expertise in WSS method [20]

Algorithm 2 : WSS using Sarsa learning
1. if InIndependentLearning Mode then

2. si := GetCurrentState()
3. ai := ActionSelection()
4. Action(ai)
5. ri := Reward()
6. Qi

new (si,ai) := (1-βi)Qi
Old(si,ai) + βi(ri+γi Qi

new(si,ai) – Qi
Old (si,ai))

7. si := FindNextState()
8. ai := NewAction()
9. ei := UpdateExpertness(ri)

10. else {Cooperative Learning}
11. Loop j := 1 to n
12. calculate normal expertise as ej

Nrm := ∑ ()=1

13. Qi
new := 0

14. Loop j := 1 to n
15. Wij := ComputerWeights(i,j,e1…...en)
16. Qj

old := GetQ(Aj)
17. Qi

new := Qi
new + Wij * Qj

old

3.2.1 Independent learning based Sarsa learning

Sarsa learning is used for the Independent Learning Mode.

Sarsa is an on policy version of Q-learning where policy is

used to determine also the next action. The on policy Sarsa

make use of the strategy resulting from Q values to decide

subsequent action a and utilizes its Q value to determine

the temporal difference. It is not waiting for all possible

action to select the best. On policy, methods calculate the

value of a policy while by means of it to get actions. They

estimated Q value, the action values for current strategy,

and then build up strategy slowly depend upon rough

values for the present strategy. The plan enhancement is

carried out in the easiest way using e-greedy strategy with

reference to current action value estimation. Sarsa learning

algorithm is used for this purpose [19, 20].

3.3 Weighted strategy sharing using Q(k) learning

Weighted strategy sharing (WSS) using Q(k) for cooper-

ative learning is implemented. Every agent allocates a

weight to their information and utilizes it depending on the

amount of its teammate expertise in WSS method [21]

Algorithm 3 : WSS using Q(λ) learning
1. if InIndependentLearning Mode then

2. si := GetCurrentState()
3. ai := ActionSelection()
4. Action(ai)
5. ri := Reward()
6. a* argmaxb Q(si, ai)

7. δ r + γQ(s’i, a*) – Q(si, ai)
8. e(si, ai) e(si, ai) + 1

9. for all si, ai

10. Q(si, a) Q(si, ai) + αδe(si, ai)
11. If ai’ = a* then e(si, ai) γλe(si, ai)

else e(si, ai) 0
12. si := FindNextState(), ai := NewAction()
13. ei := UpdateExpertness(ri)

14. else {Cooperative Learning}
15. Loop j := 1 to n
16. calculate normal expertness as ej

Nrm := ∑ ()=1

17. Qi
new := 0

18. Loop j := 1 to n
19. Wij := ComputerWeights(i,j,e1…...en)
20. Qj

old := GetQ(Aj)
21. Qi

new := Qi
new + Wij * Qj

old

3.3.1 Independent learning based Q(k) learning

Q(k) does not consider the end of the event in its support. It

only considers next exploratory action. Q(k) looks one

action previous the first searching using its awareness of

the action values. The trace revise is considered as hap-

pening in two stages [20, 21].

Int. j. inf. tecnol.

123

3.4 Weighted strategy sharing using Sarsa(k)
Learning

Weighted strategy sharing (WSS) using Sarsa (k) for

cooperative learning is implemented. Every agent allocates

a weight to their information and utilizes it depending on

the amount of its teammate expertise in WSS method.

Algorithm 4 : WSS using Sarsa(λ) learning
1. if InIndependentLearning Mode then

2. si := GetCurrentState()
3. ai := ActionSelection()
4. Action(ai)
5. ri := Reward()

6. δ r + γQ(s’i, a*) – Q(si, ai)
7. e(si, ai) e(si, ai) + 1

8. for all si, ai

9. Q(si, a) Q(si, ai) + αδe(si, ai)
10. e(si, ai) γλe(si, ai)

11. si := FindNextState()
12. ai := NewAction()
13. ei := UpdateExpertness(ri)

14. else {Cooperative Learning}
15. Loop j := 1 to n do
16. calculate normal expertness as ej

Nrm := ∑ ()=1

17. Qi
new := 0

18. Loop j := 1 to n do
19. Wij := ComputerWeights(i,j,e1…...en)
20. Qj

old := GetQ(Aj)
21. Qi

new := Qi
new + Wij * Qj

old

3.4.1 Independent learning based Sarsa (k) learning

The eligibility trace version of Sarsa is called as Sarsa(k)

[22]. The trace for state action pair of x, y is denoted by

et(x, y); substituting state action variables for state vari-

ables the equation becomes Qtþ1 ¼ Qt x; yð Þ þ
adtet x; yð Þ for all x; ywhere

dt ¼ rtþ1 þ cQt xtþ1; ytþ1

� �
� Qt xt; ytð Þ

and

et x; yð Þ ¼ cket�1 x; yð Þ þ 1 if x ¼ xt andy ¼ yt

¼ cket�1 x; yð Þ otherwise

The Sarsa (k) trace method strengths many actions of the

sequence [23].

4 Experimental setup

Maximize the sale of products that depend on the price of

the product, customer age and period of sale. These are the

information available to each agent i.e. shop. So it becomes

the state of the environment. The final result is to increase

the revenue by increasing total retailing of products.

4.1 Input dataset

The action set is defined as the retailing of probable items.

i.e. A ¼ p1; p2; p3.p10f g.

Hence action a [A. State of the system is a line of

consumers in given period for given store agent [24]. State

can be defined as

S tð Þ ¼ s1ðtÞ; s2ðtÞ; n
� �

where s1 ? {Y, M, O} is the consumer queue with i.e.

young age, middle age and old age consumer, s2 ? {H, M,

L} is the Highest price, Medium price, Lowest price,

n ? {1, 2, 3, 4………..12} is the month of item sale.

In a system minimum, 108 states and actions are pos-

sible. A number of state-action increases as the number of

transactions increases. For simplicity, it is assumed that

single state for each transaction else the state space

becomes infinitely large [23, 24]. Shop agent observes the

queue and decides product i.e. action for each customer/

state. After every sale reward is given to the agent. The

Table 1 shows the snapshot of the dataset generated for

single shop agent.

In a particular season, the sale of one shop increases.

With the help of cooperative learning, other shops learn

about the increase in the sale and they can take necessary

actions for their profit maximization.

4.2 State and action selection

Action selection mechanism in Q learning is account-

able for choosing the actions such as the agent would carry

out throughout the training procedure

[23–25].Let s ¼ s1; s2. . .sif g be one of these vectors, then

the probability si of selecting action i is given by

Table 1 Dataset

Transaction ID Age Price Month Action selected (product)

1 Y L 1 P1, P2, P4

2 Y M 1 P2, P3

3 Y H 1 P3, P4

4 M L 1 P1, P2

5 M M 1 P1, P2, P3

6 M H 1 P4, P2

7 O L 1 P1, P3

Int. j. inf. tecnol.

123

si ¼ 1 � eð Þ þ e=mð Þ if Q of i is maximum

¼ e=m otherwise

where m is the number of actions in the set.

One way to assign such probabilities is

Pðxi=yÞ ¼ CQ0ðx;yiÞ

,
X

j:

CQ0ðx;yjÞ;

P(xi/y) is the action selection probability yi, x is the current

state, C is the constant[0. The high value of C assigns

high probabilities to action i.e. maximum reward and the

small value of K assign higher probabilities to other action

i.e. minimum reward [25].

5 Results

Weighted strategy sharing algorithms i.e. one step Q

learning, Q(k) learning, Sarsa learning and Sarsa (k)

learning are compared using two parameters reward vs

episodes as shown in Fig. 2. Sarsa (k) learning gives

highest rewards compared to other three methods due to the

addition of eligibility traces. However, it’s graph is fluc-

tuating in nature. Sarsa learning gives second highest

reward values and smoothly decreases rewards as an

increase in a number of episodes. Q(k) learning receives

low rewards compared to Sarsa & Sarsa (k) learning. There

is a huge difference between the rewards received by Q(k)

learning (2500–3000) and Sarsa (k) learning (7000–8000).

One step Q learning receives lowest rewards and numbers

of rewards decreases as an increase in a number of episodes

and after some episodes (50) it remains constants.

Weighted strategy sharing algorithms i.e. one step Q

learning, Q(k) learning, Sarsa learning and Sarsa (k)

learning are compared using two parameters reward vs

learning rate as shown in Fig. 3. Sarsa (k) learning gives

highest rewards compared to other three methods due to the

addition of eligibility traces. Increase in learning rate

steadily increases the number of rewards received by the

agent. Sarsa learning gives second highest reward values

and nature is not fixed. At learning rate 0.3, a number of

rewards received drop suddenly and after that number of

rewards increases. Q(k) learning receives comparable

rewards compared to Sarsa & Sarsa (k) learning At

learning rate 0.3, rewards received by Q(k) and Sarsa

learning are same. The difference is not much more

between the rewards received by Q(k) learning, Sarsa

learning, and Sarsa (k) learning. One step Q learning

receives lowest rewards within the range of 500. After

learning rate 0.4 one step Q learning has some increase in

rewards.

Weighted strategy sharing algorithms i.e. one step Q

learning, Q(k) learning, Sarsa learning and Sarsa (k)

learning are compared using two parameters reward vs

Fig. 2 Graph of reward Vs episode for four algorithms

Int. j. inf. tecnol.

123

discount rate as shown in Fig. 4. Sarsa (k) learning gives

highest rewards compared to other three methods due to the

addition of eligibility traces. However, it’s graph is

fluctuating in nature. Sarsa learning gives second highest

reward values and smoothly increases rewards as an

increase in discount rate. Q(k) learning receives moderate

Fig. 3 Graph of reward Vs learning rate for four algorithms

Fig. 4 Graph of reward Vs discount rate for four algorithms

Int. j. inf. tecnol.

123

rewards compared to Sarsa & Sarsa (k) learning. There is a

large difference between the rewards received by Q(k)

learning (5000–6000) and one step Q learning

(1000–1500).

It has demonstrated that a shop agent can successfully

make use of reinforcement learning in selecting items

dynamically to increase its profit matrix. It is believed that

this is a promising approach for profit maximization in

retail market environments with limited information. In

cooperative learning with Weighted Strategy Sharing

algorithm, two agents use one another’s knowledge and

action set. After learning cooperatively from each other

each one receives its Q table. Significant improvement is

seen in the results compared to multiagent learning as

agents receive more knowledge. Both agents are enhancing

the sale of products to increase the revenue by learning

cooperatively. Above graphs demonstrate the performance

of Weighted Strategy Sharing algorithms with Normal

Expertness for rewards with reference to three parameters

discount rate, learning rate and a number of episodes.

Weighted strategy sharing with normal expertise outper-

forms by implementing Sarsa (k), Sarsa and Q(k) learning

as compared to one step Q learning. It receives maximum

rewards for this three algorithm. Profit calculated by each

shop agent directly depends on the rewards received by that

agent. three shop agents can obtain the maximum profit by

following Sarsa (k), Sarsa and Q(k) learning. In other

words, cooperation based on normal expertness gives more

benefit in terms of profit for three shop agents. The results

obtained by the proposed cooperation methods show that

such methods can put into a quick convergence of agents in

the dynamic environment. It also shows that cooperative

methods give a good presentation in dense, incompletely

and composite circumstances.

6 Conclusion

Cooperative learning algorithms are more efficient and

effective and produce best results. Learning algorithms are

best suitable for decision making. In cooperative learning,

sharing of more knowledge and information is possible, all

agents’ knowledge is used equally, jointly solves the

problem. The performance of cooperative learning algo-

rithms is improved as compared to multiagent learning

approach. Reinforcement learning is mainly implemented

with game theory and robot applications. Paper gives the

approach for reinforcement learning methods applied to the

diagnostic application. Combination two methods i.e.

weighted strategy sharing with expertness parameter cer-

tainly enhances the performance of learning. Weighted

strategy method is implemented with Sarsa (k), Q(k) and

Sarsa learning for cooperation between the agents that was

not implemented previously. However, these methods are

still unable to find a more expert agent as it calculates

expertise value only using the algebraic sum of the rein-

forcement signals. Hence, the future scope of this paper

shall be emphasized on enhancing the cooperative learning

algorithms for decision making using with different

expertise measures.

References

1. Vidhate DA, Kulkarni P (2017) ‘‘A Framework for Improved

Cooperative Learning Algorithms with Expertness (ICLAE)’’,

International Conference on advanced computing and commu-

nication technologies advances in intelligent systems and com-

puting, 562nd edn. Springer, Singapore, pp 149–160

2. Vidhate DA, Kulkarni P (2017) ‘‘Expertise Based Cooperative

Reinforcement Learning Methods (ECRLM)’’, International

Conference on Information & Communication Technology for

Intelligent System, Springer book series Smart Innovation, Sys-

tems and Technologies (SIST, volume 84). Springer, Cham,

pp 350–360

3. Park K-H, Kim Y-J (2015) Modular Q-learning based multi-agent

cooperation for robot soccer. Robot Auton Syst 35:3026–3033

4. M Camara, O Bonham-Carter, J Jumadinova (2015) A multi-

agent system with reinforcement learning agents for biomedical

text mining. Proceedings of the 6th ACM Conference on Bioin-

formatics, Computational Biology and Health Informatics, BCB

‘15. NY, USA, ACM pp 634–643

5. Vidhate DA, Kulkarni P (2016) ‘‘Innovative Approach Towards

Cooperation Models for Multi-agent Reinforcement Learning

(CMMARL)’’ Springer Nature series of communications in

computer and information. Science 628:468–478

6. H. Iima, Y Kuroe (2015) Swarm reinforcement learning methods

improving certainty of learning for a multi-robot formation

problem. CEC pp 3026–3033

7. DA Vidhate, P Kulkarni (2017) ‘‘Enhanced Cooperative Multi-

agent Learning Algorithms (ECMLA) using Reinforcement

Learning’’ International Conference on Computing, Analytics and

Security Trends (CAST), IEEE Xplorer, pp 556–561

8. Al-Khatib AM (2011) Cooperative machine learning method.

World Comput Sci Inform Technol J 1(9):380–383 (ISSN:
2221–0741)

9. Araabi Babak Nadjar, Mastoureshgh Sahar, Ahmadabadi Majid

Nili (2010) A Study on Expertise of Agents and Its Effects on

Cooperative Q-Learning. IEEE Transact Evol Comput 14:23–57

10. DA Vidhate, P Kulkarni (2016) ‘‘New Approach for Advanced

Cooperative Learning Algorithms using RL Methods (ACLA)’’

Proceedings of the Third International Symposium on Computer

Vision and the Internet, ACM, pp 12–20

11. Dr. Hamid R. Berenji David Vengerov (2000) ‘‘Learning,

Cooperation, and Coordination in Multi-Agent Systems’’, In

Proceedings of Ninth IEEE International Conference on Fuzzy

Systems

12. EM de Cote, A Lazaric, M. Restelli (2006) Learning to cooperate

in multi-agent social dilemmas. Autonomous Agents & Multi-

Agent System, pp. 783–785

13. DA Vidhate, P Kulkarni (2016) ‘‘Performance enhancement of

cooperative learning algorithms by improved decision making for

context-based application’’, International Conference on Auto-

matic Control and Dynamic Optimization Techniques (ICAC-

DOT) IEEE Xplorer, pp 246-252,

Int. j. inf. tecnol.

123

14. Jun-Yuan Tao, De-Sheng Li ‘‘Cooperative Strategy Learning In

Multi-Agent Environment With Continuous State Space’’, IEEE

International Conference on Machine Learning and Cybernetics,

2006

15. Panait L, Luke S (2005) Cooperative multi-agent learning: the

state of the art. J Auton Agents Multi-Agent Syst 11(3):387–434

16. Vidhate DA, Kulkarni P (2017) Multi-agent cooperation models

by reinforcement learning (MCMRL). Int J Comput Appl

176(1):25–29

17. Nagendra Prasad MV, Lesser VR (1999) Learning situation-

specific coordination in cooperative multi-agent systems. J Auton

Agents Multi-Agent Syst 2(2):173–207

18. Vidhate DA, Kulkarni P (2016) Enhancement in decision making

with improved performance by multiagent learning algorithms.

IOSR J Comput Eng 1(18):18–25

19. Vidhate DA, Kulkarni P (2016) Single agent learning algorithms

for decision making in diagnostic applications. SSRG Int J

Comput Sci Eng 3(5):2348–8387

20. Z Abbasi, MA Abbasi (2002) ‘‘Reinforcement Distribution in a

Team of Cooperative Q-learning Agent’’, Proceedings of the

Ninth ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed

Computing

21. Vidhate DA, Kulkarni P (2016) Implementation of multiagent

learning algorithms for improved decision making. Int J Comput

Trends Technol 35(2):60–66

22. Young-Cheol Choi, Student Member, Hyo-Sung Ahn (2010) ‘‘A

Survey on Multi-Agent Reinforcement Learning: Coordination

Problems’’, IEEE/ASME International Conference on Mecha-

tronics and Embedded Systems and Applications, pp 81–86

23. Vidhate DA, Kulkarni P (2016) A step toward decision making in

diagnostic applications using single agent learning algorithms. Int

J Comput Sci Inform Technol 7(3):1337–1342

24. M Camara, O Bonham-Carter, J Jumadinova (2015) ‘‘A Multi-

agent System with Reinforcement Learning Agents for Biomed-

ical Text Mining’’, Proc. of the Sixth ACM Conf. on Bioinfor-

matics, Computational Biology, and Health Informatics, BCB’15,

USA, ACM, pp. 634–643

25. Vidhate DA, Kulkarni P (2014) Multilevel relationship algorithm

for association rule mining used for cooperative learning. Int J

Comput Appl 86(4):20–27

Int. j. inf. tecnol.

123

	Improved decision making in multiagent system for diagnostic application using cooperative learning algorithms
	Abstract
	Introduction
	Cooperative learning algorithms
	Weighted strategy sharing methods
	Weighted strategy sharing using Q learning
	Independent learning based on Q-learning
	Measuring the expertness values
	Weight-assigning mechanism

	Weighted strategy sharing using Sarsa learning
	Independent learning based Sarsa learning

	Weighted strategy sharing using Q(lambda) learning
	Independent learning based Q(lambda) learning

	Weighted strategy sharing using Sarsa(lambda) Learning
	Independent learning based Sarsa (lambda) learning

	Experimental setup
	Input dataset
	State and action selection

	Results
	Conclusion
	References

