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Extended finite element method (XFEM) and second-order perturbation technique
(SOPT) were combinedly utilized using interaction integral (M-integral) through par-
tition of unity method to find out the mean and variance of mixed mode stress intensity
factor (MMSIF). Uncertain system parameters are considered in material properties,
crack length, crack orientation, gradient coefficients in the present study. MMSIF in a
numerical example with center crack is computed to validate the accuracy of the pre-
sented model. Finally, typical numerical results are presented to examine the different
modulus ratios, crack angle, crack length, position of erack and tensile, shear and com-
bined loadings with uncertain system properties on the MMSIF.

Keywords: XFEM; center crack; FGM plate; SOPT; COV; MMSIF.

1. Introduction

Functionally graded materials (FGMs) are one type of composite materials in which
different types of constituent phases vary in one or more directions to achieve tar-
geted performance with better reliability during applications. Due to the presence
of constituent phases, this type of material structures provides better strength and
toughness with desired structural integrity. Compared with classical and conven-
tional composites, FGMs hold many superior thermal, mechanical, wear-resistant

and corrosion-resistant properties [.S_]_;J_Q&h_ﬂﬂd_llQﬂ;gnsQﬂ h&&é] This is the rea-

son behind the increasing interest of researchers in FGMs in recent years. Dur-

ing manufacturing and processing of FGM structures, some form of discontinuity
always appears in the form of imperfections. These imperfections may be cracks,
holes, voids, inclusions, porosities and so on. Crack may be considered as one of the
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imperfections. The presence of crack in a structure reduces strength and toughness
of structures considerably and even more reduction in toughness under the action of
combined loadings acting simultaneously or individually in the form of tensile, shear
and combination of both loadings. Under this condition, it is essential to examine the
toughness behavior in terms of mixed mode stress intensity factor (MMSIF) under
applied loadings for optimum performance. Analysis of fracture behavior using con-
ventional FEM poses certain difficulties to update the mesh during evolving crack

and cumbersome. To relieve this difficulty. MM_IZMLAsadpoure and
Mohammad [ED_O_’Z!] and Mohammadi tZO_O_d] proposed the extended finite element

method (XFEM) to model the cracks without remeshing by introducing discontinu-
ous enrichment functions by application of XFEM for fracture behavior of composite
and FGM structures.

The study related to statistics of fracture analysis of cracked FGMs or conven-
tional structures using conventional and extended FEM approach is limited due

to complexity involved for solving random governing equation. In this direction,
Lin and Yangd l_l_&&j] established a new statistical theory based on linear regression
for the analysis of fatigue crack propagation depending on the concept of fracture
mechanics and diffusive Marcov random processes. Besterfield et _all [J_Q_Q_ll] evalu-
ated the probability of fatigue failure and fatigue crack growth using probabilis-
tic finite element method in the presence of uncertainties in component geometry,
applied loads, material properties and crack geometries. \Liu_et_al l.lQ..‘ld] evaluated
a curvilinear fatigue growth problem using first-order reliability method (FORM)
based on total derivative method, second-order reliability method (SORM) based
on Lagrange multiplier formulation and Monte-Carlo simulation.

M evaluated the stochastic mixed mode SIF of laminated composite plate
with arbitrary cracks by assuming random material properties, crack length, crack

angles and lamination angle using XFEM combined with SOPT and MCS. Nouy
et al. Mm‘;ﬂ I21)_l_d] proposed a stochastic-based analy-

sis of random multi-phase materials using spectral finite element method in the
framework of XFEM based on partition of unity method.
The FGMs structure with crack requires more attention due to involvement of

-}

various levels of randomness, particularly material properties and fracture param-
eter in terms of crack length and crack angles. For efficient and reliable design,
effect of these random variables should be quantified accurately; otherwise, pre-
dicted response differs from actual response and structure may fail or fracture after
some time. For proper handling of randomness at each stage of design parameters,
specialized probabilistic tools based on perturbation method and computer-based
MCS are being widely used so far. [Lal et all IMI] evaluated the MMSIF and their
crack growth analysis with influence of input random variables of laminated compos-
ite beam uniaxial, uniform tensile, shear and combined stresses using XFEM based
on partition of unity approach using SOPT and MCS. [Lal ¢ all hﬂld] evaluated the
MMSIF and their crack growth analysis with influence of input random variables of
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laminated composite beam uniaxial, uniform tensile, shear and combined stresses
using XFEM based on partition of unity approach using SOPT and MCS. Lang
et al. [IZ[LLi] evaluated heat transfer phenomena in composite materials with uncer-
tain material interface using XFEM based on level set method in conjunction with
polynomial chaos. ILal et all rB_D_l_'Zl] predicted the normalized mean and variance
of MMSIF and reliability analysis of a central cracked laminated composite plate
subjected to uniaxial tension. They examined the effect of input assumed random

system parameters with crack parameters, lamination angle and loading parame-
ters in terms of mean, standard deviation and probability density function (PDF)
and safety factor of cracked laminated composite plate. iKh_d.Lm_d.ml.Ldj I_Z[llﬂ, |20_1_d]
evaluated MMSIF and crack growth analysis of isotropic plate subjected to tensile,
shear and combined loadings with circular hole using XFEM. They examined the
effect of crack parameters and radius of hole of statistics of MMSIF with input
random parameters.

Chen et al. IZDM'] proposed a new method for shape sensitivity analysis of first
mode SIF for a crack in a homogeneous, isotropic and nonlinearly elastic body sub-
ject to tensile loading conditions based on the continuum sensitivities and first-order
reliability method. [Rahman_and_Chen ﬂlﬂ(]f]] again developed similar method for
shape sensitivity analysis of first mode SIF for a crack in a homogeneous, isotropic,
and nonlinearly elastic body based on the continuum sensitivities and first-order reli-
ability method through J integral and direct differentiation. [Rahmarl [_]}19}51, lZLl[Jd]
proposed a probabilistic model for nonlinear fracture-mechanics analysis through-
walled-cracked pipes subject to bending loads for estimating energy release rates,
J-tearing and structural reliability. [Rahmarl ﬂ2ﬂﬂd] proposed a new dimensional
decomposition method to obtain probabilistic characteristics of crack driving forces

and reliability analysis of cracked structures subjected to random load, material
properties and crack geometry using MCS. X1 and Rahmanl lZQDAL |2Il[1£1] developed
a new decomposition multivariate dimension-reduction computational method for
predicting failure probability of structural and mechanical systems subject to ran-
dom loads, material properties and geometry using Taylor series expansion method
and direct MCS. I_thkl;d‘b_oj_ty_dud,,ﬁaluuaﬂ NZQQQ, IZ_QQQ] presented a new moment-
modified polynomial dimensional decomposition (PDD) method for stochastic mul-
tiscale fracture analysis of three-dimensional, particle-matrix, functionally graded
materials (FGMs) subject to arbitrary boundary conditions with various discontinu-
ities using MCS. Iﬁa‘hmau_ﬂmLHmJ ﬂZD_O_]J, |2_O_Qj] developed a stochastic element-free
Galerkin method for reliability analysis of linear-elastic structures with spatially
varying random material properties using first-order reliability method through
mesh-free method.

Reddy and Rao [leﬂ] evaluated probabilistic fracture response and reliability
analysis of the linear-elastic cracked structures subjected to mixed-mode loading
conditions using stochastic-based fractal finite element method (FFEM) using
FORM and MCS. [Tomar and Zhon fE’llDﬁ]] presented the deterministic and stochastic
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analysis of dynamic fracture in heterogeneous microstructures of an Al203/TiB
ceramic composite system to quantify the random material properties and fracture

parameters using perturbation method. Emugﬁmm_ﬁndng&] ﬂzﬂlll] examined

the probabilistic crack propagation direction using Neumann expansion method

based on MCS through peridynamic-based stochastic fracture mechanics.

Guo and Noda Iﬂ)_&ﬁ] developed the piecewise exponential (PE) model for the
investigation of crack in FGMs with arbitrary properties. By (PE) model, the crack
vertical to the free surfaces was studied. The theory of residues, singular integral
equation and integral transform methods was applied. The nonhomogeneous prop-

erties of samples and relative SIFs were analyzed and the validity of the PE model is
shown. \Guo and Noda [{ZD_D_d] utilized the inplane impact loading conditions to ana-
lyze the dynamic response of FGMs for a crack crossing the interface. The problem is
reduced to the singular integral equation in the Laplace transform domain by using
Fourier integral transforms, singular integral equation method and Laplace trans-

forms. The peak and static values and overshoot characteristics of the dynamic stress
intensity factors are analyzed. [Shrivastava and Lal m evaluated stress state at
the zone of a crack tip by a predictive method to know component life, which
depends on the stress intensity factor. Here, they used finite element approach to
predict the SIFs in a finite plate with multiple edge cracks. Uamia. et all IZO_ld] uti-
lized mixed mode crack (MM crack) into the infinite graded medium where the crack
is arbitrarily oriented with material gradient. The exponential variation of mate-
rial properties and normal and tangential tractions applied on crack surfaces are
related to further applied load. The effects of the material gradient nonhomogeneity

parameter, lattice parameter, crack length, crack angular orientation were studied
for the nonlocal stress field near the crack tip. ILal and K;-_]Iganid I;(&&I] evaluated the
second-order statistics of critical stress intensity factor of single edge-notched fiber-
reinforced composite plate with random material properties using CO finite element
method in conjunction with first-order perturbation technique via iso-parametric

quarter point element through displacement correlation method.

Despite excellent characteristics, structure made of FGMs suffers from a num-
ber of shortcomings, mainly in the form of unstable crack formation which can be
initiated and propagated under different production imperfections and service cir-
cumstances. Therefore, the study of the crack stability and load bearing capacity
of these types of structures, which directly affect the safety and economics of many
important industries, has become one of the important topics of research for the
computational mechanic’s community.

A limited analysis is available on the fracture analysis of FGM structures with
random system properties. However, the fracture response of the FGMs panels with
random system parameters using XFEM with random system properties is rarely
dealt by researchers to the best of author’s knowledge. As a matter of fact, these
issues, which are at base of the problem, provided the motivation for the present
study.
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2. Formulation

Consider a center cracked body with domain denoted by 2 and outer boundary T’
containing a crack, denoted by I'., as shown in Fig. [l The body is subjected to
uniform body/volume forces b, and the traction forces are applied at the boundary
T';. The displacement boundary conditions are applied at the boundary surface, I',,
where I' = I', UT'; UT.. The parameters @ and t are prescribed displacement and
tractions, respectively. The crack surface ', is assumed to be traction-free.

2.1. Governing equation

The equilibrium equations and boundary conditions for a body B can be written

as |§-Igh§ mina di: |2! I !ﬂ; |Bg,1yt§("hkg and Bla QQ: |19,t_)gj]:

Vioe+fi=0 inQ; o-n=f" onl'y; u=a only; o-n=0 onl,,

(1)

where o is the Cauchy stress tensor and n is the unit outward normal vector, @ and
t are prescribed displacement and tractions, respectively. The parameters f9 and
ft are the body force and external traction vectors, respectively. The cracks faces
considered are traction-free.

The displacement of any point = located within the cracked domain, with model-
ing a crack, crack surfaces and crack tips in the XFEM, can be written as [Asadpoure

et
.
L
F
Y
1 9
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b

Fig. 1. An arbitrary FGM body with central crack, subjected to traction and displacement u,
having global Cartesian coordinate (X,Y").
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et al., 2006; Belytschko and Black, 1999):

mn erf

u'(z) =Y Lj )vJ+ZLk )(H (&(x)) — H(&(ax)))a

J_

oty cty f
+> L (Z (F (z) - F} (-T-z))bf’)
cty ctzf
+ ) Lin(2) (Z (Fi(e) — Ff(wm))b.‘:z_), (2)

where the crf are the set of nodes that have the crack face but not the crack tip
in their support domain, ctl and c¢t2 are the sets of nodes associated with crack
tips 1 and 2 in their influential domain, respectively. uj are the nodal displacements
(standard degrees of freedom), ak, b, ,b2 are the vectors of additional degrees of
freedom for the nodes located on crack face and the two crack tips, respectively.
The parameters F}', F? represent the crack tip enrichment functions for both the
crack tips.

The function H(&(z)) used in Eq. (@) is the Heaviside function and the value is
+1 if the point is on the positive side of the crack face and —1 otherwise, repre-

sented as
+1 £eQt .
H(f)—{_l o 3)

Nodes that belong to ctlf and ct2f are enriched with the crack-tip enrichment
functions F}(z), F?(z), respectively. The nodes which contain the crack within
their support domain and do not belong to ctlf or ¢i2f are enriched with the
Heaviside function H(€).

In the present problem, linear elastic fracture problem is considered. The kine-

matic cquatlon for plane strcss condition can be wuttcn as ﬂA:ﬂ_d.pme_at_alJ |2[1[]d

gij = C-w:jﬂj- (4)

For isotropic and orthotropic materials with three mutually perpendicular orthog-
onal planes of elastic symmetry, the strain (Cy;) can be written as:

1 v
o e
Ca Gz ] | T lE
Cij = [Ca1 Coz Co6| = —% I 0 (5)
Cig Cos Ces 1
00zl

where E and v are the Young’s modulus and Poisson’s ratio for isotropic material,
respectively. For orthotropic materials, E and v can be further defined as [Asadpoure
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et al., 2006; lAsadpoure and Mohammad, 2007 [Mohammadi, 2008]:
E =+/E\1E2», vizg=1r2 and G =Gia, (6)

where Fi1 and Fy are Young’s moduli of elasticity along longitudinal and trans-
verse directions, G1; and vis are the shear modulus and Poisson’s ratio along the

longitudinal direction, respectively.
The cracked system of a linear equation in global form can be written as [Asad-

poure et al., QQQG; lé sadpoure and Moha.mmacl, ﬂm; il\*Iohammagjﬂ, m
[K]{u"} = {F}, (7)

where [K] is the stiffness matrix, {u"} is the displacement vector of degrees of
freedom for nodes (for both classical FEM and enriched obtained by XFEM) and
{F} is the external force vector. The global matrix [K| and force vectors {F} are
calculated by assembling matrices and vectors for each element as given below
[Asadpaure <2 all, 2006k Asadpaure and Mobammad, 2007 Mobammadi, 2005,
The crack tip enrichment functions fi(r, #) which include all possible displace-

ment states can be given as ﬂAha.dpmuc_cLad l20£).d lAsadpoJuc_and_MQhammad

Fi(r,8) = COS—\/g1 c,os—\/gg(é? bm—\/gl 5111—\/92 (8)

For orthotropic material, the variable gj(f) can be written as:

gi(0) = [1+ (-1YPsin?9;]7; 1= (1] +13) withj=1,2, (9)
where
o 1 5 1
M= 5(\/92 t+a1) 1= 5(\/@2 —ay) (10)
in which
12 sin O (01 + ag — 431 32)
0; = arct o lilicn ith a = = mas.
; = arctan (cosﬁ Dy, sinﬂ) with ay 5 , 0 = Qp0p
(11)
The parameters aq, g, F; and 3, are defined as |Mghammadi, QQQS]
=28 =0 p 2T g Tt (12)
C11 C11 2¢11 2¢66

where ¢;; (i, j = 1,2,6) are elements of compliance matrix as defined in Eq. ().

2.2. Formulation of MMSIFs

For the calculation of MMSIF of the homogeneous orthotropic material, the
M-integral method based on superimposition of auxiliary and actual fields is incor-
porated in the present approach.
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The J integral can be obtained by superposition of the actual and auxiliary
states of J integrals by assuming M interaction integral as:

J = JAt - JAE 4+ M, (13)

where J?' and J*'* are the actual and auxiliary states of .J integrals, respectively
I.Aﬁﬂ.d.l.).(lllte_ﬁt_ﬂl.l, 2006 ’.Aaadpon&a.n.d.Mahanunmﬂ 2007; t&luhmnma.dihﬂﬂﬂ].
From Eq. (I3), the M integral can be expressed as []Klmbm_dn_d_ﬂmﬂ |1_9_9_d]:

i duiux o OUG dg
M = i e — WA —dA. 14
/ A [0” ox i Ox st =] O (14)
For linear elastic conditions
1
Wi = §(o.ij5§‘}‘x + U?}lx.‘;‘ij). (15)

The strain of the auxiliary field must be chosen by the strain—stress relationship so
as to satisfy the equilibrium as well as traction-free condition. After some manipu-
lations, the following equation is obtained to evaluate the M integral and expressed

as ﬂ&aadp.onm_&ml.l, |20.[ld; [A&a.dp.uumand.Moh&mmaﬂ, |2Q[lﬂ |Moha.mmadJL hﬂﬂﬂ]:

M = 2?’{.%1]}'{1}{]&”( + ??'L]_g(f(]f(ﬁux + I{Ia,ux r]]) + Q’TrngKnKﬁux, (16)

where

c .
S _ﬁlm(m)j

2 2
Cos 1 Cii
= ——="1 == 1 17
my2 5 m(mpz)+ 5 m (pype2)  anc (17)

Cll
Moz = —Thn(m + pz),

where p1 and 9 are the roots of quadratic equation.

The stress intensity factor can then be obtained by considering the two states
such as M(I) and M(II) and solving a system of linear algebraic equations. These
two states can be written as M(I): (Kf"™ = 1, K§™ = 0) and M(II): (K§"™ = 1,
K™ =0).

The MMSIF in terms of first and second mode SIF (K7 and KII) associated with
auxiliary and actual states can be evaluated by calculating M by using Eq. ([I8) with

solving a system of linear algebraic equations as IAga.gngrg et g!]. E!![!d; Asadpoure
and Mohammad, 2007; IMohammadi, lZDﬂg]:

MDY =2mu Ki+mi2 and M) = mia K1 + 2mes K. (18)

2.3. Crack growth analysis

In crack propagation analysis, maximum circumferential stress criteria for linear
elastic fracture mechanics are used. This criterion is based on the evaluation of
mixed-mode stress intensity factors. According to this criterion, it is assumed that
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(1) the crack initiation will occur when the maximum hoop stress reaches a critical
value, and (2) the crack will grow in a direction fc in which circumferential stress
ogg is the maximum. The direction is obtained by determining the MMSIF using
the domain form of interaction integral around the crack tip by assuming that
the crack surfaces are traction-free. The circumferential stress in the direction of
crack propagation is a principal stress. Hence, the crack propagation direction is
determined by taking the shear stress equal to zero and can be expressed as:

1 0 1. 1
Org = cos | — —Kisinf + =Ky (3cosf — 1 ) =) 19
—os(3) (3 K ) (19)
This leads to the equation for the crack propagation direction fcr in local crack tip
coordinate system, written as:

1 Ky Ky .
0.+ = 2arcts - — — =), 2
L arc d.]l(4) ,H—i—\!KH—i—S 0 (20)

According to this criterion, maximum propagation angle 6., is limited to 70.5°
for pure mode II cracks. The criterion basically works well for traction-free crack
surfaces.

2.4. Stochastic analysis using perturbation method

Consider a class of problems in which the zero mean random variables are small
when compared with their mean parts. We use Taylor series expansion and neglect
the third and higher order terms since second order approximation is sufficient to
quantify structural response uncertainties with required accuracy in the case of most
sensitive applications.

The static and random part of the stress intensity factor K is a function of static
and random parts of MMSIF for mode-I KI and mode-II KII, respectively, and can

be shown as [Lal_et_all, 12017, 2018]:

1 for mode I
K = f(K,) wheren = (21)
II  for mode II.

The value of K,, depends on different random variables (bi) which are correlated or
uncorrelated on each other with mean p;,, and standard deviation oy, ; the MMSIF
can be further written as:

if n =1 then K= f\’[(bl, ba, ba, ... }b-,b) (22)
and if n =11 then Ky = Kiyi(by,b2,b3,...,b,). (23)

The mean values of Ky or Ky after introducing random variables can be obtained
by expanding using Taylor series up to second order about their mean values
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[y s - - - » fit, [Kleiber and Hien), [1992; [Kaminski, 2002]:

Fl
) 0K
K = I(I(;U-bluubz?‘ % ,'ubﬂ) + Z(Q:i - Ju’b.x)—aall
i=1 !
1 I 02 K;
500 Do s ~ gt 24

The mean of first and second order SIF, K and K7y, is denoted by E (K’) and can
be expressed as:

E(Kj) = Ki(tto1, fabs - -, piv;)  and  E(Kqy) ~ Kui(sr, o2, - - - 5 oi)- (25)

Similarly, the first and second order variance of K7 and Ky can be expressed as
0K 0K L,

Var(K7y)
ar(Kr) Z: Z ab; abj

Var(Ky) = Z Z iy aﬁﬂ cov(bi, bj),

!,

7y

;) and
(26)

i=1 j=1

where n is the total number of random variables and cov(bi, bj) is the covariance
of bi and bj. The covariance matrix of correlated random variables can be further

written as | ' ) llm \Hadlar and Sollerd, hﬂﬂd]

cov (bi,by) = [C][C], 27)
where
i af] cov(by,ba) -+ cov(by,b;)
COV(bQ, bl) 0'2 CEt COV(bg, bb)
=1 |
cov(b;,b1) cov(b;,by) - O’fﬁ_
[ 1 pb}_.bz te pbl.bg
’ Pba,by 1 Tt Phab;
[c ] = . s - v - o - .. ! (28)
L Pbiby  Phiby " 1
where

Obys Obgs v O = COV(b1,ba, ... b)) X Kp(fbys by« -5 pip;)  and
~cov(b;, b;) (29)
pbf_,f)j = bq‘_ : b_, .

Here cov(bi, bj) and py, p, are the covariance between random variables and correla-
tion coefficient (COC) and coeflicient of variance (COV) among the different input
random variables, respectively.
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For statistically independent (uncorrelated) random variables, the value of COC
is assumed as zero whereas for correlated random variables, COC can be assumed
as any value.

In the second order mean using SOPT, the mean of first and second order SIF,
K7 and Ky, can be written as [Hadlar and Mahadavar ,|_21m_d]:

1
E(K{) = Ki(pp,, ftoy, - - -» i, ) + =var{K;} and
’ (30)

1
E(I{H) = I(II(“M s Hboy ey :ubn) + 5\1’&1‘{}{11}.

The corresponding second variance matrix of first and second order SIF, K; and
K1, will be the same as given in Eq. (28).

It is to be noted that to estimate the second order variance, the information on
the third and fourth order moments of the bi must be available. However, in most
cases, this information is not available. Therefore, the use of second order mean
and the first order variance are considered adequate for most practical engineer-
ing applications. The standard deviation (SD) may be obtained by square root of
variance. The coefficient of variance (COV) of MMSIF is obtained by the ratio of
standard deviation to mean of the MMSIF.

The first order variance, Eq. (26), the derivative of response variables w.r.t.
input random variables (bi), i.e., (0K, /db;) using FOPT, is difficult to evaluate due
to complex expression and derivation. So, the derivative of response variables can
be obtained using central difference method of finite difference analysis (FDA).

The first order derivatives calculated using FDA can be written as:

K, _ K, (bi+ 0b;) — K, (b — dby) -
ob; 26b; '
where dbi is a perturbation of the design parameter, i.e., the coefficient of variation
(COV) of random system parameters from their mean values. The expected mean

and SD are evaluated by mean centered SOPT and by employing an MCS.

3. Results and Discussion

The uniaxial tensile, shear and combined loadings are applied in perpendicular
direction to crack propagation (unless otherwise stated). The interaction integral
is calculated within the domain of size rd = 3,/a. Here a is the effective length
from the crack tip. For the computation of the results, total 30 x 60 elements are
considered in the analysis.

Using the computer programme code in MATLAB, MMSIF in terms of mean and
COV for the center crack composite plate under uniaxial tensile, shear and combined
loadings is evaluated. XFEM and SOPT are used to find out the normalized mean
and COV of MMSIF. Applying the random system parameters in crack length,
crack orientation, gradient coefficients, uniaxial tensile loading and its effect are
examined.
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The basic system random variables (bi) used in this paper for center cracks
composite laminated plates are defined as:

by = FEy, by=FEy, by=wv2, by=a, bs=0,
bs = G2, br=a, bg=0, by=7,

where Fy, Fas, a, o are the longitudinal, transverse Young's modulus, crack length
and crack angle, respectively.

The normalized first and second mode SIFs (K7, K1) used here for the combined
loadings (tensile and shear) in the present analysis are represented as:

Ki = Ki/oyra and K1 = Ku/oy/ra, for tensile stress;
Ky = Ki/tv/ma and Ky = Ky/7v/ma, for shear stress;
Ki = Ki/{yma and Ky = Ku/{y/7a, for combined stress.

The parameters L and W are the total length and width of the plate, respectively.
The Young’s modulus written in terms of the exponential function is given as:

E(z) = E1e?*, 0<z<W,
where gradient coefficient 3 can be written as
B = log(E: /E»).

Before, proceeding over use of FGM material, it is necessary to understand SIF
variation between isotropic material and FGM material. Table [0l shows the com-
parison of SIF in isotropic and FGM (3 = 0.1) plate with respect to crack length.
It is observed that under the action of tensile loading, first mode SIF variation in
isotropic plate is larger than that in FGM plate by 1.12%, 0.07%, 1.31% and 4.4%,
respectively. Similarly, second mode SIF is 17%, 15%, 14.2% and 18.3% larger in
isotropic plate than in FGM plate. The result clearly revealed that with the use of
FGM material resistance to crack propagation and arresting the crack, values of K
and K7y get reduced in FGM than isotropic material. This is the main reason to
study the FGM plate under the action of various loading conditions, and we also

Table 1. Comparison of SIF in isotropic and FGM
(3 = 0.1) plate with respect to crack length.

Crack length (a) SIF  Isotropic plate FGM plate

0.1 K 1.2019 1.1884
K 0.0028 0.0023
0.15 K1 1.2840 1.2831
K 0.0096 0.0081
0.2 K 1.3580 1.3402
Ku 0.0218 0.0187
0.25 K 1.4946 1.4287
K 0.0398 0.0325
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observe the effect of randomness in different parameters for the better stability and
performance of the structure or mechanical component under operation.

The geometry of FGM plate considering center crack subjected to uniaxial ten-
sile, shear and combined loadings with crack enrichment in the form of crack face
and crack tip is shown in Figs. Ba) and (b). Figure [Xc) shows the stress distri-
bution in the FGMs plate subjected to tensile loading and Fig. Bld) for the shear
loading, respectively. It is observed from the figures that whenever the loading is
applied over the specimen or structure contains the cracks, there will be change
in the stress distribution contour from the cracked region. Under tensile loading
condition, the gathering of stresses will be in the upper part, while in case of shear,
that will be in left part of the crack.

Y4 0.5

PEEEITERE I,

2 hi2

bt
h/2
i J Fixed
w Edge 0.5
(a) (b)
s Jisaaminnn
300
250 500
200
150 o °
100
_ -500
50
0.5 0 0.5 0 0.5
() (d)

Fig. 2. Geometry of FGM plate with (a) single centre cracks subjected to uniaxial loading,
(b) erack enrichments, (c) stress contour for tensile loading and (d) stress contour for shear loading.
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Table 2. Normalized SIF for edge cracked plate under membrane loading for
different values of a, 3, .

a, B, Present model ~Mohammadi [2008] Guo and Noda [2007]
Ki K K

(0, 0, 0) 1.12 1.003 0.9969

(0.1, 0.1, 0.1) 1.18 1.0762 1.075

(0.25, 0.25, 0.25) 1.2861 1.2013 1.2043

(0.5, 0.5, 0.5) 1.47 1.4381 1.4371

(0.75, 0.75, 0.75) 1.6955 1.713 1.7055

(1,1, 1) 1.9622 2.0361 2.0318

Table @ includes the different values of gradient coefficients (/3) varying from 0
to 1 with the increment of 0.25. With the variation of 3, normalized stress intensity
factor also varies in increasing order. From the table, it is clearly observed that the
results obtained from the partition of unity approach based on XFEM method in
the present studm in very good agreement with those of Mohammadi 12011;‘_4] and
\Guo and Nodd .

Table @ shows the validation study of present first and second order perturba-
tion technique (FOPT, SOPT) and independent Monte-Carlo simulation (MCS) by
varying individual uncorrelated random system parameter {b4 = 0.05 to 0.20} on
the normalized mean and COV of MMSIF for center cracked FGM plate subjected
to uniaxial tensile, shear, combined tensile and shear stress for 3 = 1.0, § = 0,
a = 0.2. The numerical results of the stochastic analysis of FGMs plate with sin-
gle center crack subjected to different mechanical loadings along considered in this

study are not available in the literature to the best of authors’ knowledge. There-
fore, to verify and validate the results of the present stochastic XFEM algorithm,
results of moralized mean and COV MMSIF obtained through FOPT and SOPT are

Table 3. Comparison of normalized mean and COV of MMSIF using FOPT,
SOPT and MCS {b;(i = 4) = 0.05 — 0.20}.

coe Ky Ky
FOPT SOPT MCS FOPT SOPT MCS

0.05  0.0590 0.0580 0.0575 0.2747 0.2733 0.2742
(2.2144)  (2.2327)  (2.2214)  (0.0305)  (0.0305)  (0.030143)

0.10  0.1320 0.1220 0.1251 0.6600 0.6441 0.6578
(2.1556)  (2.3326)  (2.251)  (0.0260)  (0.0267)  (0.0264)

0.15  0.1935 0.1652 0.1727 1.2019 1.1252 1.1701
(2.1540)  (2.5232)  (2.342)  (0.0222)  (0.0237)  (0.0229)

020  0.2810 0.2094 0.2481 1.9772 1.7202 1.8721
(2.0988)  (2.8161)  (2.632)  (0.0185)  (0.0213)  (0.01981)

0.25  0.3554 0.2324 0.2817 3.0918 2.3895 2.8112
(2.1003)  (3.2129)  (2.875)  (0.0154)  (0.0199)  (0.01721)

0.30  0.4623 0.2507 0.3253 4.7361 3.0724 3.4557
(2.0484)  (3.7783)  (3.091)  (0.0125)  (0.0193)  (0.0171)
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compared with sampling-based MCS solutions. In MCS method, number of sample
points required to perform the sample-based analysis is given; so 3500 number of
sample points are utilized for satisfactory convergence of result. It is important to
note that the MCS method utilizes higher computational cost when compared with
perturbation technique and this is the reason behind use of perturbation technique
in wide range of stochastic problems.

Table @ shows the effect of individual random system parameter {b; (i =
1,2,...,9) = 0.10} on the normalized mean and COV of MMSIF of central crack
FGM plate in terms of Ky and Ky for a = 0.2, 8 = 20 (o, 3, v) = 0.80 with the
variation in loading. Among the given different random variables, random change
in crack length and crack angle is most dominant when compared with other ran-
dom variables. Hence, it is concluded that proper measurement and strict control of
these random variables are highly important for reliability and safety point of view.
However, randomness in material parameters is equally important when compared
with fracture parameters.

Table Bl shows the effect of crack length with mechanical loadings on the nor-
malized mean and COV {b; (i = 4) = 0.10} of MMSIF of FGM plate for § = 15
(ar, B,v) = 0.75. For the same loading, with the increase of crack length, the mean
and corresponding COV of MMSIF increase in general. It is concluded that crack
length is one of the most sensitive parameters for providing safety and reliability
of the center cracked plate. Accurate evaluation of crack length with minimum size

Table 4. Effect of individual random variables on the normalized
mean and COV of K| and Ky of central cracked FGMs plate sub-
jected to uniaxial tensile, shear and combined loadings.

RV SIF Tensile Shear Combined
Mean COV Mean COv Mean COvV
Eiq K 1.7762  0.0001 0.4742 0.0011 1.2544  0.0004
Ky 0.5933  0.0005 2.4967  0.0013  3.0899  0.0011

Fao Ky 1.9735 0.0003  0.5269 0.0034 1.3938 0.0012
Ky 0.6592  0.0007  2.7741  0.0019  3.4333  0.0016
U2 Ky 1.7779  0.0012  0.4670 0.0126 1.2641  0.0067
Ky 0.5929  0.0001 25036  0.0041  3.0965  0.0033

G2 K 1.7751  0.0004  0.4707 0.0048 1.2577 0.0017
Ky 0.5824  0.0009  2.4860 0.0027 3.0784  0.0023

a Ky 1.7257 0.0900 0.5463 0.1383 1.1443 0.1880
Ky 05916 0.0686  2.4368  0.0788  3.0284  0.0768
o K 1.7123  0.0680 0.6853 0.0741 0.9365 0.8798
Ky 0.6461  0.2958  2.3349 0.1028 2.9810 0.0164
o Ky 1.7361 0.0001  0.4620 0.0011 1.2280 0.0004
Ky 05796 0.0002  2.4364  0.0006  3.0160  0.0005
B K 1.7361  0.0001  0.4620 0.0011  1.2280 0.0004
K 05796 0.0002 24364  0.0006  3.0160  0.0005
~ Ky 1.7361  0.0001  0.4620 0.0011  1.2280 0.0004

Ky 05796 0.0002  2.4364 0.0006 3.0160 0.0005
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Table 5. Effect of crack length on the normalized mean and COV of K7 and Ky
of central cracked FGMs plate subjected to uniaxial tensile, shear and combined

loadings.
Crack length (a) SIF Tensile Shear Combined
Mean cov Mean cov Mean cov
i K 14464 0.1933 1.0738 0.3399 0.3681 0.3872
Kyp 05726 0.3476  1.9749  0.2419  2.5475  0.1524
0.15 K 1.56192 0.1917 0.9277 0.2045 0.5759 0.2812
Ky 05939 0.3306  2.1046  0.2108 2.6985  0.1273
0.2 Ky 1.6238 0.1990 0.7526 0.1921 0.8350 0.2159
Ky 0.6247  0.3071  2.2228 0.1910 2.8475 0.1137
0.25 Kp 17670 0.1984 0.5833 0.3875 1.1159 0.1736

Ky 0.6545  0.2808 23777  0.1765  3.0322  0.1093

is one way that the reliability of cracked structures can be increased. The COV of
MMSIF is highest for combined loading, whereas mean is highest for tensile loading.
Hence, proper attention of tensile loading is required for safety purpose of central
cracked FGM plate.

Table[@ shows the effect of crack angle on the normalized mean and COV (b;{i =
4} = 0.10) of Ky and Kj; of edge cracked FGM plate subjected to uniaxial tensile
stress and value of crack length maintained as a = 0.2 («, 3, 7v) = 0.65. With the
increase of crack angle, the mean of first mode SIF decreases while second mode SIF
increases. The mean of first mode SIF is highest for tensile loading and lowest for
shear loading. It is concluded that the cracked plate is safer and more reliable when
crack angle is assumed as maximum as possible keeping the crack tip at center. It is
concluded that crack angle is one of the very important parameters for safety and
reliability of the plate.

Table [[shows the effect of eccentricity (that is, the crack is 0.2 units above and
below the central position of the plate) of crack length on the normalized mean
and COV {b; (i = 4) = 0.10} of MMSIF of FGM plate for § = 0, a = 0.2, (a,
B, v) = 0.45. Whenever crack is below the center part of the plate, mean MMSIF

Table 6. Effect of crack angle on the normalized mean and COV of MMSIF
(b = {i =4} = 0.1) of K7 and Ky of center cracked FGM plate subjected to
uniaxial tensile stress.

Crack angle ()  SIF Tensile Shear Combined
Mean Cov Mean cov Mean cov
10 K 1.6437 0.1874 0.3029 2.7149  1.3109 1.2016
Ky 04998 05482 23175  0.1580  2.8173  0.0327
25 K 1.3307  0.3030 1.3560 0.5824  1.3560 0.5824
Ky 0.7261  0.1323 14619  0.5767 1.4619  0.5767
35 K 1.0501  0.3956  1.7475  0.1967  1.7475  0.1967

Ky 0.8051  0.0057 0.6114 1.5509 0.6114  1.5509
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Table 7. Effect of eccentricity on the normalized mean and COV
(b;{i =4} = 0.1) of K1 and Ky of edge cracked FGMs plate subjected
to uniaxial tensile stress,

ey SIF Tensile Shear Combined
Mean Ccov Mean Ccov Mean cov

0.2 Ky 1.8207  0.0004  0.5423  0.0801  2.2343 0.1188
Ky 0.0690 0.0163  2.3279  0.0991  2.2843  0.0994

0.0 K 1.5688  0.1228 0.4502  2.7362  2.0045 0.7158
Ky 02379 1.3928 2.2581  0.0863  2.4961  0.0724

-0.2 Ky 1.5043  0.0923 1.3164 0.2200 2.8206  0.1519
Ky 00261 0.8619  2.2992 0.0974 23253  0.1060

is lowest while it is maximum above the center part of plate in case of combined
loading. This is because maximum stress concentration occurs near or around the
edge region of plate in tensile loading and in that case crack is below the center

part.

0.5

0.5

(a) Crack growth under tensile loading

Fig. 3.

0.6

0.4

Table 8. Effect of crack length and modulus ratios on the normalized
mean and COV (b; {i =4} = 0.1) of K| and Kj; of edge cracked FGMs
plate subjected to uniaxial tensile stress, # = 15, a = 0.2.

o, 8,y SIF Tensile Shear Combined
Mean cov Mean cov Mean COov

0.1 K 1.1379  0.2628 0.5107 0.2727 0.6041  1.9267
Kpp 04379 03766  1.5135 0.2720 1.9515 0.1264
0.2 Krp o 1.1982  0.2604 0.5407 0.2618 0.6328 1.9311
Ky 04612 03765 1.6028  0.2710  2.0640  0.1263
0.5 Ky 1.4064  0.2541  0.6443 0.2314 0.7317  1.9438
Ky 05413 0.3760 1.9080 0.2690 2.4493  0.1265

*Klmnlp

et Tight tip

*K ulefttip 1

K ”
—ge't |, right tip

Normalized mean, MMSIF

0.2 0 0.2 0.4 ' 0;6

(b) MMSIF under tensile loading

Effect of crack growth and number of steps on MMSIF subjected to (a) tensile loading,

(c) shear loading, (e) combined loading, and corresponding MMSIF because of (b) tensile loading,
(d) shear loading and () combined loading, respectively.
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Fig. 3. (Continued)

TableBincludes the different values of gradient coefficients (a, 3, v) varying from
0.1 to 0.5. The observation shows that with the variation of gradient coefficients,
normalized stress intensity factor also varies in increasing order.

Figure B shows the path followed by central crack subjected to tensile, shear
and combined loadings with initial crack length (a = 0.1) and crack angle (6 = 0)
with crack propagation increment step being 0.1 keeping number of steps as 4. The
obtained crack propagating path is almost parallel to crack and normalized first
mode SIF increases while second mode SIF shows very little change when the plate
is subjected to tensile loading. Crack path moving upward of the plate is subjected
to shear and combined loading.

4. Conclusions

The stochastic XFEM combined with SOPT and MCS is used to evaluate the mean
and COV of normalized mixed (KI and KII) mode SIF of single central crack FGM

1950009-18



Int. J. Comp. Mat. Sci. Eng. 2019.08. Downloaded from www.worldscientific.com

by NATIONAL UNIVERSITY OF SINGAPORE on 03/16/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Stochastic MMSIF of center cracks

plate subjected to uniaxial tensile, shear and combined loadings. The following
conclusions can be noted from the limited study.

The mixed mode SIF of central crack FGM plate is most sensitive to the ran-
dom change in the crack length, crack orientation, and elastic moduli of material.
For safety factor of crack rectangular plate, these random system properties should
be properly taken care; otherwise predicted response may be differing from actual
response and resultant crack plate may be unsafe. It is interesting to note that effect
of shear and combined loading is very dominant for mean of mixed mode SIF when
compared with tensile loading. Hence, if small amount of these types of loadings
is applied on the structure, there will be maximum chances of failure and fracture.
However, it is surprising that small random change in system parameters, espe-
cially crack length and crack angle, makes the COV of cracked plate under tensile
loading most dominant. It may be due to variation of crack parameters along axial
direction.

For reliability and safety of cracked FGMs plate, lower crack length and higher
crack angle above from center with higher modulus ratio are required. The position
of erack at the center is most sensitive; hence, strict control of crack at the center is
highly recommended. It is also very interesting that after changing the position of
crack from center, sensitivity of crack decreases hence proper control of central crack
is more important. Among the given different loading conditions, crack propagates
parallel toward axial direction, while for shear and combined loadings it propagates
toward downward and upward with axial direction, respectively. So from the study,
better crack growth prevention can be possible.

References

Asadpoure, A., Mohammadi, S. and Vafai, A. [2006] “Crack analysis in orthotropic media
using the extended finite element method,” Thin Walled Struct. 44(9), 1031-1038.
Asadpoure, A. and Mohammad, S. [2007] “Developing new enrichment functions for crack
simulation in orthotropic media by the extended finite element method,” Int. J. Numer.

Meth. Eng. 69, 2150-2172.

Belytschko, T. and Black, T. [1999] “Elastic crack growth in finite elements with minimal
remeshing,” Int. J. Numer. Meth. Eng. 45(5), 601-620.

Besterfield, G. H., Liu, W. K., Lawrence, M. A. and Belytschko, T. [1991] “Fatigue crack
growth reliability by probabilistic finite elements,” Comput. Meth. Appl. Mech. Eng.
86, 297-320.

Chakraborty, A. and Rahman, S. [2008] “Stochastic multiscale models for fracture analysis
of functionally graded material,” Eng. Fract. Mech. 75(8), 2062-2086.

Chakraborty, A. and Rahman, S. [2009] “A parametric study on probabilistic fracture
of functionally graded composites by a concurrent multiscale method,” Probab. Eng.
Mech. 24(3), 438-451.

Chen, G. S., Rahman, S. and Park, Y. H. [2001] “Shape sensitivity and reliability analyses
of linear-elastic cracked structures.” Int. J. Fract. 112(3), 223-246.

Evangelatos, G. 1. and Spanos, P. D. [2011] “A collocation approach for spatial discretiza-
tion of stochastic peridynamic modeling of fracture,” J. Mech. Mater. Struct. 6(7-8),
1171-1195.

1950009-19



Int. J. Comp. Mat. Sci. Eng. 2019.08. Downloaded from www.worldscientific.com

by NATIONAL UNIVERSITY OF SINGAPORE on 03/16/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Lal & K. Markad

Fleming, M., Chus, Y. A., Morant, B. and Belytschko, T. [1997] “Enriched element-free
Galerkin methods for crack tip fields,” Int. J. Numer. Meth. Eng. 40, 1483-1504.
Guo, L. C. and Noda, N. [2007] “Modeling method for a crack problem of functionally
graded materials with arbitrary properties — Piecewise-exponential model,” Inf. .J.

Solids Struct. 44, 6768-6790.

Guo, L. C. and Noda, N. [2008] “Dynamic investigation of a functionally graded layered
structure with a crack crossing the interface,” Int. J. Solids Struct. 45, 336-357.

Hadlar, A. and Mahadavan, S. [2000] Probability Reliability and Statistical Methods in
Engineering Design (John Wiley & Sons Inc., New York).

Hadlar, M. H. and Sollero, P. [1998] “Crack growth analysis in homogeneous orthotropic
laminates,” Compos. Sci. Tech. 58, 1697-1703.

Jamia, N., Borgi, S. E. I, Fernandes, R. and Vegamoor, V. [2016] “Analysis of an arbitrarily
oriented crack in a functionally graded plane using a non-local approach,” Theoret.
Appl. Fract. Mech. 85, 387-397.

Kaminski, M. M. [2002] Computational Mechanics of Composite Materials: Sensitivity,
Randomness and Multiscale Behaviour (Springer-Verlag, London).

Khatri, K. and Lal, A. [2017] “Stochastic XFEM fracture and crack propagation behavior
of an isotropic plate with hole emanating radial crack subjected to various in-plane
loadings,” Mech. Adv. Mat. Struct. 25, 732-755.

Khatri, K. and Lal, A. [2018] “Stochastic FEM based fracture behavior and crack growth
analysis of a plate with hole emanating crack under biaxial loading,” Theor. Appl.
Fract. Mech. 96, 1-22.

Kleiber, M. and Hien, T. D. [1992] The Stochastic Finite Element Method (Wiley,
New York, Chichester).

Lal, A. and Kapania, R. K. [2013] “Stochastic stress intensity factor response of single edge
notched laminated composite plate,” 54th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, Boston, Massachusetts, p. 1615.

Lal, A., Mulani, B. and Kapania, R. K. [2017] “Stochastic fracture response and crack
growth analysis of laminated composite edge crack beams using extended finite element
method,” Int. J. Appl. Mech. 9, 1-33.

Lal, A., Mulani, B. and Kapania, R. K. [2018] “Stochastic critical stress intensity factor
response of single edge notched laminated composite plate using displacement correla-
tion method,” Mech. Adv. Mater. Struct., doi:10.1080/15376494.2018.1506067.

Lal, A. and Palekar, S. P. [2016] “Probabilistic fracture investigation of symmetric angle
ply laminated composite plates using displacement correlation method,” Curved Layer
Struct. 3(1), 47-62.

Lal, A. and Palekar, S. P. [2017] “Stochastic fracture analysis of laminated composite plate
with arbitrary cracks using X-FEM,” Int. J. Mech. Mater. Des. 13, 195-22.

Lal, A., Palekar, S. P., Mulani, B. and Kapania, R. K. [2017] “Stochastic extended finite
element implementation for fracture analysis of laminated composite plate with a cen-
tral crack,” Aero. Sci. Technol. 60, 131-151.

Lang, C., Dostan, A. and Maute, K. [2013] “Extended stochastic FEM for diffusion prob-
lems with uncertain material interfaces,” Comput. Mech. 51, 1031-1049.

Lin, Y. K. and Yang, J. N. [1983] “On statistical moments of fatigue crack propagation,”
Eng. Fract. Mech. 18(2), 243-256.

Liu, W. K., Chen, Y. and Belytschko, T. [1996] “Three reliability methods for fatigue
crack growth,” Eng. Fract. Mech. 53(5), T33-752.

Mohammadi, S. [2008] Extended Finite Element Method for Fracture Analysis of Structures
(Blackwell, Oxford), 10.1002/9780470697795, Chapter 7.

1950009-20



Int. J. Comp. Mat. Sci. Eng. 2019.08. Downloaded from www.worldscientific.com

by NATIONAL UNIVERSITY OF SINGAPORE on 03/16/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Stochastic MMSIF of center cracks

Nouy, A. and Clément, A. [2010] “Extended stochastic finite element method for the
numerical simulation of heterogeneous materials with random material interfaces,”
Int. J. Numer. Methods Eng. 83, 1312-1344.

Nouy, A., Clément, A., Schoefs, F. and Moés, N. [2008] “An extended stochastic finite ele-
ment method for solving stochastic partial differential equations on random domains,”
Comput. Meth. Appl. Mech. Eng. 197, 4663-4682.

Nouy, A., Schoefs, F. and Moés, N. [2007] “X-SFEM a computational technique based on
X-FEM to deal with random shapes,” Fur. J. Comput. Mech. 16, 277-293.

Rahman, S. [1995] “A stochastic model for elastic-plastic fracture analysis of circumferen-
tial through-wall-cracked pipes subject to bending,” Fng. Fract. Mech. 52(2), 265—-88.

Rahman, S. [2000] “Probabilistic fracture mechanics: J-estimation and finite element meth-
ods,” Eng. Fract. Mech. 68, 107-125.

Rahman, S. [2006] “A dimensional decomposition method for stochastic fracture mechan-
ics,” Eng. Fract. Mech. T3, 2093-2109.

Rahman, S. and Chen, G. [2005] “Continuum shape sensitivity and reliability analyses of
nonlinear cracked structures,” Int. J. Fract. 131(2), 189-209.

Rahman, S. and Rao, B. N. [2001] “An element free Galerkin method for probabilistic
mechanics and reliability,” Int. J. Solids Struct. 38, 9313-9330.

Rao, B. N. and Rahman, S. [2002] “Probabilistic fracture mechanics by Galerkin meshless
methods — Part I: Rates of stress intensity factors,” Comput. Mech. 28, 351-364.
Reddy, R. M. and Rao, B. N. [2008] “Stochastic fracture mechanics by fractal finite element

method,” Comput. Methods Appl. Mech. Eng. 198, 459-474.

Shrivastava, A. K. and Lal, A. [2013] “Determination of fracture parameters for multiple
edge cracks of a finite plate,” J. Awrer. 50, 901-910.

Suresh, S. and Mortensen, A. [1998]. Fundamentals of functionally graded materials: Pro-
cessing and thermomechanical behavior of graded metals and metal-ceramic composites
(IOM Communications Ltd, London).

Tomar, V. and Zhou, M. [2005] “Deterministic and stochastic analyses of fracture processes
in a brittle microstructure system,” FEng. Fract. Mech. T2, 1920-1941.

Xu, H. and Rahman, S. [2004] “A generalized dimension-reduction method for multi-
dimensional integration in stochastic mechanics,” Int. J. Numer. Methods Eng. 61,
1992-2019.

Xu, H. and Rahman, S. [2005] “Decomposition methods for structural reliability analysis,”
Probab. Eng. Mech. 202, 39-50.

1950009-21



